

ROM Status Update

U. Marconi, INFN Bologna

Assumptions

- Level-0 trigger rates at L=10³⁶ cm⁻²s⁻¹:
 - 50kHz Bhabha, 25kHz beam backgrounds, 25kHz physics+backgrounds
 - 50% headroom desirable
- Baseline: 150kHz rate capability
- Event size: 100 kByte
- Pre-ROM sizes: 500 kByte

ROM implementation

- FPGA PC implementation, suitable to work at the baseline expected trigger rate.
- From the FPGA data enters the PC through the PCle interface.
- We are using a Xlinx Virtex-6 FPGA connectivity kit, equipped with PCI Express (x4 PCI Express Gen2 Endpoint).
- We reached a 14.5 Gb/s transmission rate of a theoretically available bandwidth of 16 Gb/s.
 - Without data processing.
- The PC will forward data to the HLT farm exploiting a 10 GbE NIC board.

Exploiting multi-core CPU

- We made preliminary tests distributing event fragments for processing to different CPU cores.
 - The Linux driver writes event fragments at different RAM locations.
 - Processes running on different cores access assigned dedicated RAM banks to fetch data.
- Performance depends on the mother board architecture and CPUs.
 - Different cores share the bus to access the RAM.
- NUMA PC architecture provides full parallelism.
 - NUMA: Each core is equipped with a dedicated bus/RAM.
 - Intel Quick Path Interconnect.

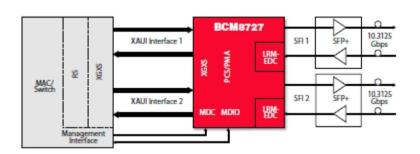
Rate, ROMs and CPU cores

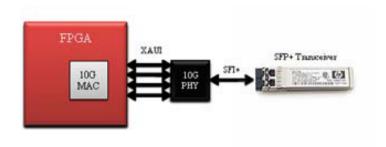
- Data flux: $150 \text{ kHz} \times 500 \text{ kB} = 600 \text{ Gb/s}$
- n. ROM: 600 Gb/s / 10 Gb/s ~ 60
- Event fragment size per ROM: 500 KB / 60 ~ 10 KB
- n. of CPU COREs: $150 \text{ kHz} \times T_{\text{proc}} = 150 \text{ kHz} \times 1 \text{ ms} = 150.$
- n. of CPU COREs per PC = $3 \div 4$
 - Additional 1 or 2 COREs to manage network traffic.
- Minimum T_{proc} when forwarding event fragments as IP packets not doing any processing.

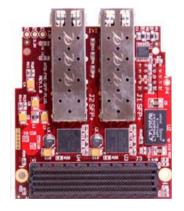
Higher rates

- What if the rate would rise up to ~500 kHz?
- The flux per ROM becomes
 500 kHz * 10 kB = 40 Gb/s,
 ... too much for a single PC... may be.
- Some more ROM's (4 times) will do the job, but it has a cost: each board (an interface board to the FEE and PC) would handle a small event fragment of just ~2.5 KB.
- Doing what on these small fragments?

Higher rates

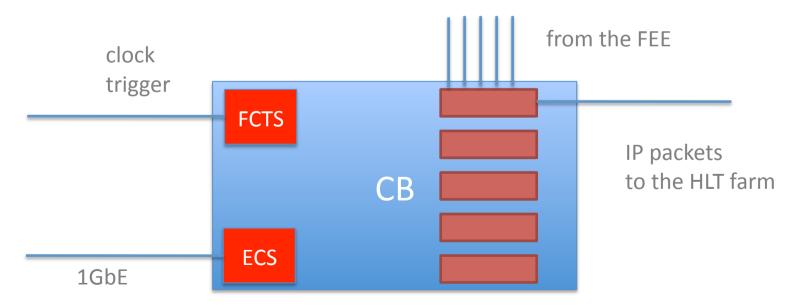

- Level-0 trigger rates at
 L=10³⁶ cm⁻²s⁻¹:
 - 50kHz Bhabha,
 - 25kHz physics+backgrounds
 - 25kHz beam backgrounds
 - 50% headroom desirable
- Baseline: 150kHz rate capability
- Event size: 100 kByte
- Pre-ROM sizes: 500 kByte


- Level-0 trigger rates at $L = 5. 10^{36} \text{ cm}^{-2} \text{s}^{-1}$:
 - 250kHz Bhabha,
 - 125kHz physics +backgrounds
 - 25kHz beam backgrounds,
- Trigger rate > 400 kHz
- Event size: 100 kByte
- Pre-ROM sizes: 500 kByte


FPGA implementation

- The optical interface to the FEE is mandatory.
- Data format conversion (from the detector format to Ethernet, the industrial standard) could be performed by a FPGA.
- It requires implementing IP protocol on the FPGA, which will act as a 10 GbE network interface.
- The 10 gigabit Ethernet standard encompasses a number of different physical layer (PHY) standards: 10 GbE optical fiber.

FPGA 10 GbE



- XAUI to SFP+ conversion
- **XAUI** is a standard for extending the <u>XGMII</u> (10 Gigabit Media Independent Interface) between the <u>MAC</u> and <u>PHY</u> layer of <u>10 Gigabit Ethernet</u> (10GbE).
- The newest module standard was the <u>enhanced small form-factor pluggable transceiver</u>, generally called SFP+. Based on the <u>small form-factor pluggable transceiver</u> (SFP) and developed by the ANSI T11 <u>fibre channel</u> group, it was smaller still and lower power than XFP. SFP+ became the most popular socket on 10GE systems. [4][5] SFP+ modules do only optical to electrical conversion, no clock and data recovery, putting a higher burden on the host's channel equalization. SFP+ modules share a common physical form factor with legacy SFP modules, allowing higher port density than XFP and the re-use of existing designs for 24 or 48 ports in a 19" rack width blade.
- Optical modules are connected to a host by either a <u>XAUI</u>, <u>XFI</u> or SFI interface. XENPAK, X2, and XPAK modules use XAUI to connect to their hosts. XAUI (XGXS) uses a four-lane data channel and is specified in IEEE 802.3 Clause 48. XFP modules use a XFI interface and SFP+ modules use an SFI interface. XFI and SFI use a single lane data channel and the encoding specified in IEEE 802.3 Clause 49.
- SFP+ modules can further be grouped into two types of host interfaces: linear or limiting. Limiting modules are preferred except when using old fiber infrastructure which requires the use of the linear interface provided by 10GBASE-LRM modules.^[6]
- [edit]

Engineering

- Carrier board (CB) to power and control FPGA "format converter units" (FCU).
- Each FCU has n optical input channels and one 10 GbE output (optical) channel.
- Is a completely synchronous system.

