

Updates on the SVT activities in Bologna

F.M. Giorgi – INFN Bologna

Summary

- L0 strip readout circuit upgrade
- INMAPS submission
- Test Beam Sept. 2011

Strip readout upgrade under investigation

Asynchronous logic assumed:

Triggered event size not known a-priori (thus readout time also)

Efficiency Study (by M. Villa)

- Parameter Space:
 - Trigger
 - frequency: 150 kHz (1.5 Safety Factor)
 - jitter: 100 ns (the goal is to go down to 30 ns)
 - latency: 10 us (1.7 S.F.; LVL1 design is 6 us)
 - Triggered window: 100ns + 2 Time stamps .
 - Time stamping: 33 MHz (T(BCO)=30 ns)
 - Chip readout clock: 66 MHz (T(RDclk)=15 ns)
- Strip dead time equal to 2.4 peaking time
- Strip rates as given by Riccardo C. (5/13/11)
- High level simulation (C++) of MAIN features of a readout chip: Preliminary Toy Monte Carlo

L1 simulation: 687 kHz/strip

Inefficiency sources: Analog peaking time and limited buffer size.

INMAPS 32x32 Matrix Submission

July 2011

9/13/2011

The project

- CMOS 180 nm, 4-well process
- INMAPS pixel sensors (INFN PV-BG, ref. to L. Ratti presentation)
- 32x32 pixels matrix (INFN PI, F. Morsani G. Rizzo)
 - Column addressable with in-pixel TS selection
 - Parallel output
- Integrated readout, SQUARE architecture:
 - Synthesizable VHDL architecture model.
 - 2 sub-matrices control with parallel hit extraction
 - 1 column sparsification in 1 clock.
 - Cluster compression algorithm
 - Triggered and Data push working mode
 - Parallel output bus.
 - I2C-like slow control.

Readout Architecture Design Flow:

- Conceptual design
- VHDL coding
- Behavioral simulations with Montecarlo hit generator on pixel
- Extracted hits cross-checking
- VHDL Synthesis
- Post synthesis simulations
- Behav. and P.S. sim. compare
- Physical synthesis and implementation (chip layout)
- Post Layout simulations
- P.L. and P.S. sim. compare

Real matrix model (by F. Morsani)

Simulation check tools

- Several **debug tools** were developed during last years to help us with simulation checks.
 - VHDL Monte Carlo generator based tuned on physics simulation data (data provided by R.Cenci)
 - Efficiency estimators
 - X-check tools
 - Event display
 - Cluster analysis

INMAPS Submission summary

- Behavioral and post layout simulation in good agreement.
- Placed 35k-cell peripheral readout circuit.
- Collaboration submitted chip in June 2011.

CERN Test Beam September 2011

Bologna Updates

9/13/2011

DAQ electronics (M. Villa)

- 2 EDRO boards
- 6 Strip modules - (4 triggering + 2)
- 2 DUTs module
- New DUT EPMC firmware developed for this Test Beam

TDAQ integration updates

(by C. Sbarra, S. Valentinetti)

- Table positions logger
- Data monitoring and data quality
- Updated run configurations data-base

Conclusion

- New L0 strip readout architecture (pixel-like) under investigation.
- Latest pixel readout architecture implemented on a 4-well INMAPS process: now at foundry.
- Now packing and moving to Geneva: Test Beam @CERN SPS next week.

9/13/2011

Strip Rates

• Strip rates as given by Riccardo C. (5/13/11):

new values

- L0: 2060 kHz/strip
- L1: 687 kHz/strip
- L2: 422 kHz/strip
- L3: 325 kHz/strip
- L4: 47 kHz/strip
- L5: 28 kHz/strip

old values

~ =

(268 kHz/strip) (179 kHz/strip) (52.5 kHz/strip) (21.9 kHz/strip) (18.7 kHz/strip)

M. Villa

Max peaking times (ns) at fixed strip efficiency

Target strip efficiency		97.6%	95%		91%	
	SF=5	SF=1	SF=5	SF=1	SF=5	SF=1
LO	5	25	10	52	19	95
L1	15	74	31	156	57	286
L2	24	120	51	253	93	466
L3	31	156	66	329	121	605
L4	215	1077	455	Max	836	Max
L5	361	1807	763	Max	1403	Max

L4: 47 kHz/strip but longer deadtimes

9/13/2011

M. Villa

Hits in triggered BCO

Hit multiplicity in Trig BCOs

L1: 687 kHz/strip

M. Villa

Efficiencies vs rate and dead times

Layer	C _D [pF]	t _p [ns]	ENC from R _s [e rms]	ENC [e rms]	Hit rate/strip [kHz]	MMC Efficiency
0	11.2	25	220	680	2060	(0.732)
1	1 26 7	50	650	1190	697	0.917
	20.7	100	460	930	- 087	0.841
2	31.2	50	830	1400	422	0.948
3	45.8	50	1480	2130	325	0.960
4	52.6	1000	340	820	47	0.893
5	67.5	1000	500	1010	28	0.934

Pessimistic: Cluster size 1, no charge sharing, worst peaking time

Conditions: 20 buffers, 150 kHz trigger rate, 300 ns time window for all layers. Buffer overflow on Layer 0

9/13/2011

Strip chip: how many barrels ?

Inefficiency sources: Analog peaking time, limited buffer size, sparsification time.

