Update on microstrip front-end and LayerO pixel upgrade

L. Ratti

Università degli Studi di Pavia and INFN Pavia

I SuperB Collaboration Meeting

September 13-16 2011 Queen Mary, University of London - UK

OUTLINE

- Microstrip front-end processor
- design features
- first simulation results
- Monolithic pixels in INMAPS CMOS technology
 - general features
 - layout characteristics
 - 3D analog front-end for hybrid pixels • design modification for p-on-n sensors

University of Bergamo and INFN Pavia

Luigi Gaioni, Massimo Manghisoni, Valerio Re, Gianluca Traversi

University of Pavia and INFN Pavia

Alessia Manazza, Lodovico Ratti, Stefano Zucca

Technology options for the SuperB SVT

- Design of the SVT layerO at SuperB has to comply with severe requirements
 - large background, >5 MHz/cm², small thickness, <1% X₀
- Microstrips/striplets
 - Baseline option fast (layers 0 to 3) and slow (layers 4 and 5) front-end based on a 130 nm planar technology

3D Hybrid pixel detectors

vertically integrated, mixed-signal circuit for a pixel detector in high resistivity silicon fine pitch (50 µm) bump bonding (IZM, Munich) or more advanced technologies (direct bonding by Ziptronix or T-Micro) - based on a 130 nm dual tier CMOS process - 128×32 element chip to be submitted in the next run

3D DNW and INMAPS monolithic sensors

- deep N-well sensors were proposed to enable fast readout through pixel-level sparsification and time stamping - DNW sensor in an undepleted substrate, analog front-end for capacitive detectors, analog and digital blocks integrated in separate layers - based on a 130 nm dual tier CMOS process - a 128×96 pixel chip is being designed for the next run
- INMAPS sensors based on a quadruple well 180 nm CMOS technology featuring a high resistivity epitaxial layer - test chip submitted end of July

Microstrip detector: proposed layer grouping

Layer	С _⊳ [рF]	available † _p [ns]	selected t _p [ns]	ENC from R _s [e rms]	ENC [e rms]	Channel width [µm]	Hit rate/ strip [kHz]	Efficiency 1/(1+N)
0	11.2	25, 50, 100, 200	25	220	740	3000	2060	0.890
1	26.7		100	460	940		697	0.857
2	31.2		100	590	1100		422	0.908
3	34.4		200	410	940		325	0.865
4	52.6	400, 600, 800, 1000 (or 500 and 1000)	500	490	1000	9000	47	0.947
			600	440	940			0.937
5	67.5		800	560	1090		28	0.949
			1000	500	1030			0.937

RC²-CR shaping, $I_D = 500 \ \mu$ A, L=200 nm, N-channel input device, analog dead time=2.4 t_p

Strip front-end development

Fast and slow front-end prototype chip (IBM 130 nm) – slow front-end will is being developed by the group of Carlo Fiorini in Milan

- Milestones for strip front-end development
- 2012: first test structures 2 x 64 channels (fast and slow front-end), auxiliary blocks
- 2013: first fully operational prototype chip - 2 x 128 channels (fast and slow readout)
- 2014: production run
- Account for some contingency after the first or the second step

Fast front-end block diagram

Simulation results available for a preliminary version of the charge preamplifier (I_D =500 μA)

Equivalent noise charge

Results obtained with ideal RC²-CR shaper and ideal bias network

Response to a 1600 e⁻ input charge

Charge preamplifier response linearity

Input charge from -96 ke⁻ to 96 ke⁻

INMAPS technology

- Avoid charge collection in parasitic N-wells by means of a buried P-type layer (deep P-well)
- Improved charge collection by means of high resistivity epitaxial layer (~1 kOhm cm)

Front-end for MAPS in INMAPS technology

SuperB

Prototype chip (submitted end of July)

In 3x3 matrices all the analog outputs are available and an injection capacitor is connected to the central pixel

32x32 matrix (4-diode pixels) with sparsified digital readout architecture

3x3 matrix, 4-diode, no DPW, preampli input device with EL structure, Nw/Pepi diodes and accumulator capacitors

> Nw/Pepi diodes, single channels

3x3 matrix, 4-diode pixels, DPW, preampli input device with EL structure

3x3 matrix 4-diode pixels, DPW, preampli input device with open structure

3x3 matrix 2-diode pixels, DPW, preampli input device with EL structure

32x32 sparsified readout matrix with time stamp

Elementary cell

Elementary cell (emphasis on DPW layer)

Digital signal routing

Vertical integration (3D) technologies

- In wafer-level, three-dimensional processes, multiple strata of planar devices are stacked and interconnected using through silicon vias (TSV)
- 3D processes rely upon the following enabling technologies
 - Fabrication of electrically isolated connections through the silicon substrate (TSV formation)
 - Substrate thinning (below 50 µm)
 - Inter-layer alignment and mechanical/ electrical bonding
- Tezzaron Semiconductor technology (via first approach) can be used to vertically integrate two 130 nm CMOS layers specifically processed by Chartered Semiconductor

From 2D to 3D MAPS

- Analog and digital blocks integrated in separate layers to minimize cross-talk between digital blocks and sensor/analog circuits
 - less PMOS in the sensor layer \rightarrow improved collection efficiency
 - more room for both analog and digital power and signal routing (in planar CMOS MAPS scaling to suitably large matrices is forbidden by the need for point-to-point lines from macropixels to periphery)

- Tier 1: collecting electrode and mainly NMOS parts from the analog front-end
- Tier 2: PMOS parts from the analog front-end, digital front-end and peripheral digital readout electronics

3D DNW MAPS layout

3D hybrid pixels

Development of a 3D front-end chip to be vertically integrated with fully depleted detectors through some more (bump bonding) or less (direct bonding) standard technique

3D front-end for hybrid pixels: polarity selection

Changes in the 3D hybrid pixel front-end to make signal processing possible from both n-on-n and p-on-n sensors

Channel response

Slight nonlinearity due to the nonlinear shaper feedback network

Conclusion

- Design of the front-end channel for striplets/microstrips has started submission planned for mid-2012
- Monolithic pixels in INMAPS CMOS technology submitted at the end of July hips expected to be back in a couple of months
- Design of 3D front-end for hybrid pixels modified to enable signal processing also from p-on-n sensors - ready to submit (both 3D DNW MAPS and 3D front-end for hybrid pixels) 3 months after testing the devices from the first 3D run
- Wafers from the first 3D run are now being diced and should be available soon for characterization

