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Simple Model
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3 Distances Along the Track

First we define the probability density function for the distance of the imaginary
0th along the track.

f

D0(D) = �(D) (1)

Noting that the ionization events follow Poisson statistics, the probability den-
sity function of the separation of two consecutive ionizations (�) follows an
exponential distribution.

f�(�) =

(
⇢e

�⇢� � � 0

0 � < 0
(2)

where ⇢ is twice the density of ionization events along the track. It is also half
of the characteristic ionization length for the medium, for the type of track. It
is twice and half because drift chambers cannot distinguish ionization events
which occur before or after the point of closest approach, so we treat all of them
as being after.

With 1 and 2 we can construct the probability density function for the
distance of the first cluster along the track, D1 = D0+�. The probability density
function for the sum of two independent variables is simply the convolution of
the two variables’ probability density functions:

f

D1(D) =

Z �1

1
f

D0(x)f�(D � x)dx (3)

= f�(D) = ⇢e

⇢D

. (4)

Similarly we construct the probability density function for the distance of
the second cluster along the track, D2 = D1 + �.

f

D2(D) =

Z 1

�1
f

D1(x)f�(D � x)dx (5)

f

D2(D) =

(R
D

0
⇢

2
e

�⇢x

e

�⇢(D�x)
dx D � 0

0 D < 0
(6)

f

D2(D) =

(
⇢

2
De

�⇢D

D � 0

0 D < 0
(7)

Since � � 0, we can state that D
n

� D

n�1 > 0 for all n > 0, and D0 = 0,
to avoid overly cluttering the notation.

Similarly again we construct D3 = D2 +�.

f

D3(D) =

Z 1

�1
f

D2(x)f�(D � x)dx (8)

=

Z
D3

0

⇢

3
xe

�⇢x

e

�⇢(D�x)
dx (9)

= ⇢

3
e

�⇢D

D

2

2
(10)
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Convolutions

fDn(D) = (fDn�1 ? f�)(D)
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Figure 1: Probability density functions for ionization event distances along the

track.

By obvious pattern-matching and familarity with iterated integrations, we

can generalize to

f

D

n

(D) = ⇢

(⇢D)

n�1

(n� 1)!

e

�⇢D

. (11)

Although the initial probability density functions were normalized, and the con-

volution of two normalized functions is itself normalized, we can still check

the normalization of this expression by recalling the integral expression for the

Gamma function

�(n) =

Z 1

0
x

n�1
e

�x

dx (12)

and recalling the special case of integer n: �(n) = (n� 1)!. If we identify ⇢D in

11 with x in 12, the fact of normalization is obvious.

4 Distances From the Wire

In section 3 we found the probability density function for the distance of the

n

th

ionization event from the point of closest approach along the track. The

point of closest approach of the track is a distance b away from the actual wire,

3

fD1(D) = ⇢e�⇢D

fD2(D) = ⇢2De�⇢D

...
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Although the initial probability density functions were normalized, and the con-

volution of two normalized functions is itself normalized, we can still check

the normalization of this expression by recalling the integral expression for the

Gamma function

�(n) =

Z 1

0
x

n�1
e

�x

dx (12)

and recalling the special case of integer n: �(n) = (n� 1)!. If we identify ⇢D in

11 with x in 12, the fact of normalization is obvious.

The overall probability density function in 11 is assuming that none of the

distances are known. An equivalent way to view it is as if the distances of all

the n

th

ionization events were measured and put into a histogram, the resulting

histogram would have the same profile as 1. Thus if the first ionization event is

already measured, the actual probability density function for the second event

is not f

D2(D), but rather f

D1(D � D1). This is the case in general for the

probability density function of the next-to-be-measured distance:

3
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Change of Variables
xn =

p
D

2
n + b

2

a distance also called the impact parameter. We wish to know the probability

density function for the distance of the n

th

cluster from the wire itself.

Recalling that we are working in only two dimensions, the distance from the

wire given a distance along the track is

x

n

=

p
D

2
n

+ b

2
. (13)

We exploit the conservation of probability to make the transformation:

f

D

n

(D)dD = g

n

(x)dx (14)

f

D

n

(D(x))dD(x) = ⇢

(⇢

p
x

2 � b

2
)

n�1

(n� 1)!

e

�⇢

p
x

2�b

2 xp
x

2 � b

2
dx (15)

thus obtaining

g

n

(x) =

⇢

n

(n� 1)!

x(x

2 � b

2
)

n�2
2

e

�⇢

p
x

2�b

2
. (16)

An interesting feature has emerged in the exponent

n�2
n

, so that the func-

tional form drastically changes between n = 1, n = 2 and n � 3. For example

in the limit of x ! D

+
(or D ! 0+), we obtain

g

n

(x) !

8
><

>:

1 n = 1

⇢

2
b n = 2

0 n � 3

(17)

It would be interesting to find the critical points and maxima of g

n

(x),

however this is complicated and the precise answers (involving roots of third-

order polynomials) are not very enlightening. We can summarize as follows: g1

has a maximum only at x ! D+, where it diverges; g

n

for n � 3 has a single

finite maximum maximum at finite x, the position of which grows slowly with

n.

g2 has interesting maximal behavior, strongly dependent on the product ⇢b.

Specifically, if ⇢b � 1
2 , the only maximum is at the boundary x ! D+ where

g2(D) = ⇢

2
b. If ⇢b <

1
2 then there are two critical points at

x

2
± =

1±p
1� (2⇢b)

2

2⇢

2
. (18)

Where x+ is generally a local maximum and x� a local minimum. For certain

values of ⇢ and b, this local maximum is also the global maximum, while for

others the boundary value at x ! D+ is the global maximum. Unfortunately

again the precise expression for these cases is not enlightening.

As in section 3, the normalization of 16 is assured if everything was done

properly, but it is still possible to check. Using the integration feature of the

popular search engine Wolfram Alpha, we obtain (after simplification)

Z
g

n

(x)dx = ��(n, ⇢

p
x

2 � b

2
)

(n� 1)!

(19)

4
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4

x ! b

+
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Peculiar Second Cluster
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xe
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Where x+ is generally a local maximum and x� a local minimum. For certain

values of ⇢ and b, this local maximum is also the global maximum, while for

others the boundary value at x ! D+ is the global maximum. Unfortunately

again the precise expression for these cases is not enlightening.

As in section 3, the normalization of 16 is assured if everything was done

properly, but it is still possible to check. Using the integration feature of the
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p
x

2 � b

2
)

(n� 1)!
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4

The maximum is at x+, and sometimes 
it is greater than the boundary 
maximum.
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Actually...
measured, the probability density function for the distance of the next is not

g

n+1(x) but rather

g

n

(x) =

x

n

⇢e

�⇢(
p

x

2
n

�b

2�
p

x

2
n�1�b

2)

p
x

2
n

� b

2
. (23)

5 Bayesian Analysis

In the section 4 we found the probability distribution functions for the distance

of the n

th

ionization event from the wire, given a known impact parameter b. In a

drift chamber experiment, the situation is reversed. There the arrival time of the

electron cluster from the n

th

ionization event is measured, from which is found

a distance using the time-to-distance relation for that drift chamber cell. From

this distance we wish to know the mostly likely value for the unknown impact

parameter. With use of Bayes’ theorem, we can obtain the full probability

density function for the impact parameter, given measured distances x

n

.

Bayes’ theorem states

P (↵|�;�) = P (↵;�)P (�|↵;�)
P (�;�)

(24)

where the left hand side refers to the probability of an event ↵ given the ob-

served state � and external assumptions �. The first term in the numerator is

the probability of event ↵ given external assumptions � irrespective of the ob-

servation �. The second term in the numerator is the probability of observation

� given the state ↵ and assumptions �. The denominator is the probability of

observation � under assuptions � irrespective of the state ↵.

In our case, the left hand side is the probability distribution function for the

impact parameter b given a set of observations of ionization distances from the

wire {x
n

}. The first term in the numerator is the prior probability distribution

for the impact parameter, while the second is the previously found probability

distribution function for the distances of the ionization events from the wire,

given in equation 18. The numerator is the probability of getting a set of mea-

sured distances x

n

irrespective of the true impact parameter; this is equivalent

to a normalization term and is given by the integral of the whole numerator

over all possible values of the impact parameter.

Bayes’ theorem is very general and in this case we apply it iteratively to

build up the probability density function considering one ionization event at a

time. It is also easier to use as a primary variable the distance squared, rather

than the distance directly.

5.1 One Cluster

We consider the measured distance of the first ionization event x1, or rather

x

2
1. Without any additional information, the prior probability density function

for the impact parameter is uniform over all positive values. In principle this

7

If we already measured the first n clusters, the next one’s 
distance from the wire actually follows:

a distance also called the impact parameter. We wish to know the probability

density function for the distance of the n

th

cluster from the wire itself.

Recalling that we are working in only two dimensions, the distance from the

wire given a distance along the track is
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2
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2
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An interesting feature has emerged in the exponent

n�2
n

, so that the func-

tional form drastically changes between n = 1, n = 2 and n � 3. For example

in the limit of x ! D

+
(or D ! 0+), we obtain

g

n

(x) !

8
><

>:

1 n = 1

⇢

2
b n = 2

0 n � 3

(17)

It would be interesting to find the critical points and maxima of g

n

(x),

however this is complicated and the precise answers (involving roots of third-

order polynomials) are not very enlightening. We can summarize as follows: g1

has a maximum only at x ! D+, where it diverges; g

n

for n � 3 has a single

finite maximum maximum at finite x, the position of which grows slowly with

n.

g2 has interesting maximal behavior, strongly dependent on the product ⇢b.

Specifically, if ⇢b � 1
2 , the only maximum is at the boundary x ! D+ where

g2(D) = ⇢

2
b. If ⇢b <

1
2 then there are two critical points at

x

2
± =

1±p
1� (2⇢b)

2

2⇢

2
. (18)

Where x+ is generally a local maximum and x� a local minimum. For certain

values of ⇢ and b, this local maximum is also the global maximum, while for

others the boundary value at x ! D+ is the global maximum. Unfortunately

again the precise expression for these cases is not enlightening.

As in section 3, the normalization of 16 is assured if everything was done

properly, but it is still possible to check. Using the integration feature of the

popular search engine Wolfram Alpha, we obtain (after simplification)

Z
g

n

(x)dx = ��(n, ⇢

p
x

2 � b

2
)

(n� 1)!

(19)

4

Not

with n=2.
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Bayes’ Theorem

where

�(a, z) =

Z 1

z

t

a�1
e

�t

dt (20)

is the upper-incomplete gamma function. It is easy to evaluate for the limits of

integration x 2 (b,1) for the normalization integral, where the gamma function

evaluates to 0 and (n � 1)! respectively, demonstrating the normalization once

more.

5 Bayesian Analysis

In the section 4 we found the probability distribution functions for the distance

of the n

th

ionization event from the wire, given a known impact parameter b. In a

drift chamber experiment, the situation is reversed. There the arrival time of the

electron cluster from the n

th

ionization event is measured, from which is found

a distance using the time-to-distance relation for that drift chamber cell. From

this distance we wish to know the mostly likely value for the unknown impact

parameter. With use of Bayes’ theorem, we can obtain the full probability

density function for the impact parameter, given measured distances x

n

.

Bayes’ theorem states

P (↵|�;�) = P (↵;�)P (�|↵;�)
P (�;�)

(21)

where the left hand side refers to the probability of an event ↵ given the ob-

served state � and external assumptions �. The first term in the numerator is

the probability of event ↵ given external assumptions � irrespective of the ob-

servation �. The second term in the numerator is the probability of observation

� given the state ↵ and assumptions �. The denominator is the probability of

observation � under assuptions � irrespective of the state ↵.

In our case, the left hand side is the probability distribution function for the

impact parameter b given a set of observations of ionization distances from the

wire {x
n

}. The first term in the numerator is the prior probability distribution

for the impact parameter, while the second is the previously found probability

distribution function for the distances of the ionization events from the wire,

given in equation 16. The numerator is the probability of getting a set of mea-

sured distances x

n

irrespective of the true impact parameter; this is equivalent

to a normalization term and is given by the integral of the whole numerator

over all possible values of the impact parameter.

Bayes’ theorem is very general and in this case we apply it iteratively to

build up the probability density function considering one ionization event at a

time. It is also easier to use as a primary variable the distance squared, rather

than the distance directly.

5.1 One Cluster

We consider the measured distance of the first ionization event x1, or rather

x

2
1. Without any additional information, the prior probability density function

7

P (b2|x2
1; ⇢) =

Cg1(x1)

P (x2
1; ⇢)

for the impact parameter is uniform over all positive values. In principle this

should be restricted to the actual dimensions of the drift chamber cell volume,

though here we maintain the infinite-cell approximation for the calculation.

This renders our prior probability distribution function unnormalizable by itself

(since its integral diverges), but the denominator in Bayes’ theorem fixes this

problem automatically. We get

P (b

2|x2
1; ⇢) =
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The Second Cluster

Cannot be done 
analytically (by me)

should be restricted to the actual dimensions of the drift chamber cell volume,

though here we maintain the infinite-cell approximation for the calculation.
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The case of only considering the first cluster is equivalent to the case where

no cluster counting is used, as a simple discriminator is used to get the overall

signal timing. Thus this can be used as a baseline to compare the improvement

from considering multiple clusters.

5.2 Two Clusters

The technique for considering the second cluster is similar, but the algebra

becomes considerably more di�cult. We first restate Bayes’ theorem:
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The first term in the numerator is 30 just calculated. The second term is

the probability density function for the distance of the second ionization event

8

We just calculated that!
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Figure 5: Probability density functions for the impact parameter given the

measured distance of the first ionization event, comparison of various techniques.

from the wire, given an impact parameter and a measured distance for the first

ionization event. Because the position of the first ionization is measured already,

the probability density function for this is not simply 18 with n = 2, but rather

is given by 23 (with n = 2). Before writing a horrible expression, we notice that

any terms independent of b will cancel from the numerator and denominator.
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(32)

Unfortunately this cannot be performed analytically, though approximating

with x2 � x1 is tempting, we immediately break out the numeric techniques.

First we confirm the validity of numerical techniques by re-doing the single

cluster case, and comparing with the analytic result.

The case of two clusters considered is now calculated, using the analytic

result of P (b

2
;x

2
1, ⇢) for speed and precision.

10

Remember, we already 
measured the first cluster!
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Numerics

• Using Python, Scipy, Numpy

• Integration method is Gaussian Quadrature

• Normalizations check out

• Sanity checks passed
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Unfortunately this cannot be performed analytically, though approximating

with x2 � x1 is tempting, we immediately break out the numeric techniques.

First we confirm the validity of numerical techniques by re-doing the single

cluster case, and comparing with the analytic result.

The case of two clusters considered is now calculated, using the analytic

result of P (b

2
;x

2
1, ⇢) for speed and precision.
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Unfortunately this cannot be performed analytically, though approximating

with x2 � x1 is tempting, we immediately break out the numeric techniques.

First we confirm the validity of numerical techniques by re-doing the single

cluster case, and comparing with the analytic result.

The case of two clusters considered is now calculated, using the analytic

result of P (b

2
;x

2
1, ⇢) for speed and precision.
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Single Cluster:
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Lessons Learned

• The second cluster changes not the most 
likely impact parameter, but the expectation 
value and standard deviation

• Single-cell resolution is improved by 
considering multiple clusters
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Next Steps

• Create a numerical recursive method for 
considering the first arbitrary n clusters

• Compare results to Garfield simulations to 
validate the model

• Use the lessons learned and real data (from 
proto2 at LNF) to develop a real procedure
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Beyond Single-Cell & 2D

• If cluster counting is used for dE/dx, even if 
it is not used directly for tracking, the 
discriminator threshold can be set at 1 
electron

• The number of clusters deposited is 
sensitive to the track length within the cell, 
possible to determine θ with single cells?

• Other approaches (throw variables into 
TMVA, neural net...)
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