<u>1st SuperB Collaboration Meeting</u>

13-16 September 2011 Queen Mary, University of London (UK)

Time-Dependent CP Violation in Charm

15/09/2011 A. Bevan / **G. Inguglia** / B. Meadows Particle Physics Research Centre Queen Mary University of London g.inguglia@qmul.ac.uk

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story?

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?

i) Theory + Experiments

ii) Numerical analysis

iii) FastSim and Charm

i) Theory + Experiments

...We explore Time-dependent CP asymmetries formalism in the charm sector for the first time...

Time-dependent CP asymmetries in D and B decays

A. J. Bevan and G. Inguglia Queen Mary, University of London, Mile End Road, E1 4NS, United Kingdom

> B. Meadows University of Cincinnati, Cincinnati, Ohio 45221, USA (Dated: July 19, 2011)

The measurement of time-dependent CP asymmetries in charm decays can provide a unique insight into the flavor changing structure of the Standard Model. We examine a number of different CP eigenstate decays of D mesons and describe a method that can be used to measure time-dependent CP asymmetries at existing and future experiments, with a preliminary assessment,

BEVAN - INGUGLIA - MEADOWS

Buras parametrization of the CKM matrix up to λ^5

q.'

TA	R 1		
	UTFit	CKM Fitter	
2	0.22545 ± 0.00065	0.22543 ± 0.00077	
I A	0.8095 ± 0.0095	$0.812^{+0.013}_{-0.027}$	
	$\rho = 0.135 \pm 0.021$		Why do we express the matrix ir
1	$\eta = 0.367 \pm 0.013$		terms of $\overline{\rho} \overline{\eta}$?
	$\overline{0}$ 0.132 ± 0.020	0.144 ± 0.025	
i	$\overline{\eta}$ 0.358 ± 0.012	0.342 + 0.016	2

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

Constraint on the cu triangle

It is possible to constrain the apex of the *cu* triangle in two ways:

 by constraining two internal angles
 by measuring the sides

 $\gamma_c = (68.4 \pm 0.1)^\circ$ from CKM prediction +any measurement of $\beta_c \rightarrow constraint$ on the apex of the triangle

$$X + iY = 1 + \frac{A^2 \lambda^5 (\overline{\rho} + i \overline{\eta})}{\lambda - \lambda^3 / 2 - \lambda^5 (1 / 8 + A^2 / 2)}$$

X = 1.00025Y = 0.00062

4

Time-dependent formalism (i)

Neutral meson systems exhibit mixing of mass eigenstates |P_{1,2}> where:

$$i\frac{d}{dt}\binom{|P_{1}\rangle}{|P_{2}\rangle} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} & M_{22}^{*} - \frac{i}{2}\Gamma_{22}^{*} \end{pmatrix} \binom{|P^{0}\rangle}{|P^{0}\rangle} = H_{eff}\binom{|P^{0}\rangle}{|P^{0}\rangle}$$

 $H_{eff} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22} \leftarrow CPT \text{ INVARIANCE}$ $H_{eff} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22}, \Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \leftarrow CP \text{ INVARIANCE}$ $\Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \leftarrow T \text{ INVARIANCE}$ $\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = -\langle \Psi(t) | \Gamma | \Psi(t) \rangle$

At time t_{TAG} the decays $D \to K^{-(+)}l^{+(-)}v_l$ account for 11% of all D decays and unambiguously assigns the flavour : D^0 is associated to $a l^+$, $\overline{D^0}$ is associated to $a l^-$

Assuming PDG values for BR and CLEO_c efficiency for double tagging we expect with semi-leptonic tag ~158000 for D⁰ $\rightarrow \pi^+ \pi^-$

Time-dependent formalism (ii)

The time-dependence of decays of P^0 (P^0) to final state |f > are:

$$\Gamma(P^{0} \rightarrow f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}h_{-} + e^{[\Delta \Gamma|\Delta t|/2]} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos \Delta M \Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin \Delta M \Delta t\right)\right]$$

$$-\overline{\Gamma}(\overline{P^{0}} \rightarrow f) \propto e^{-\Gamma_{1}|\Delta t|} \left[\frac{h_{+}}{2} + \frac{\Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}h_{-} - e^{[\Delta \Gamma|\Delta t|/2]} \left(\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos \Delta M \Delta t - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin \Delta M \Delta t\right)\right]$$
where: $h_{+-} = 1 \pm e^{\Delta \Gamma |\Delta t|}, \quad \lambda_{f} = \frac{q}{p} \frac{\overline{A}}{A}$ Ar very important!
We now obtain the time-dependent CP asymmetry

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma}^{Phys}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\Gamma^{Phys}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma |\Delta t|/2} (|\lambda_{f}|^{2} - 1) \cos \Delta M \Delta t + 2\Im(\lambda_{f}) \sin \Delta M \Delta t}{(1 + |\lambda_{f}|^{2})h_{+}/2 + h_{-}\Re(\lambda_{f})}$$

Where we included mistag probability effects

Uncorrelated D⁰ mesons

$$A(t) = \frac{\overline{\Gamma}(t) - \Gamma(t)}{\overline{\Gamma}(t) + \Gamma(t)} = 2e^{\Delta \Gamma t/2} \frac{(|\lambda_f|^2 - 1)\cos \Delta M t + 2\Im(\lambda_f)\sin \Delta M t}{(1 + |\lambda_f|^2)(1 + e^{\Delta \Gamma t}) + 2\Re(\lambda_f)(1 - e^{\Delta \Gamma t})}$$

Mistag probability and dilution become important

 $A^{Phys}(t) = \frac{\overline{\Gamma^{Phys}}(t) - \Gamma^{Phys}(t)}{\overline{\Gamma^{Phys}}(t) + \Gamma^{Phys}(t)} = +\Delta\omega + \frac{(D - \Delta\omega)e^{\Delta\Gamma t/2}(|\lambda_f|^2 - 1)\cos\Delta M t + 2\Im(\lambda_f)\sin\Delta M t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)} \frac{1}{\pi}$

The flavour tagging is accomplished by identifying a "slow" pion in the processes (CP and CP conjugated): $D^{*+} \rightarrow \overline{D}^0 \pi_s^+$ $D^{*-} \rightarrow \overline{D}^0 \pi_s^-$

SuperB at Υ (4S) and LHCb

D^{*} from $e^+e^- \rightarrow C \overline{C}$ can be separated from those coming from B's by applying a momentum cut. Clean environment. More easier to separate prompt D* from B cascade than LHCb

D^{*} mesons are secondary particles produced in the primary decay of a B meson. High background level to keep under control. Trigger efficiency.

Analysis of CP eigenstates (i)

When exploring CP violation, ignoring long distance effects, the parameter λ may be written as:

$$\lambda_{f} = \left| \frac{q}{p} \right| e^{i \phi_{MIX}} \left| \frac{\overline{A}}{A} \right| e^{i \phi_{CP}} \qquad \phi_{MIX} : phase of D^{0} D^{0} mixing \\ \phi_{CP} : overall phase of D^{0} \rightarrow f_{CP} (eigenstate)$$

$$A = |T| e^{i(\phi_{T} + \delta_{T})} + |CS| e^{i(\phi_{CS} + \delta_{CS})} + |W| e^{i(\phi_{W} + \delta_{W})} + \sum_{q=d,s,b} |P_{q}| e^{(i\phi_{q} + \delta_{q})}$$

The following processes, as we will see, are tree dominated

$$D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}, K^{+}K^{-}K^{0}, K^{0}\pi^{+}\pi^{-}$$

Assuming negligible the contribution due to P/CS/W amplitudes, then:

$$\lambda_f = \left| \frac{q}{p} \right| e^{i \phi_{MIX}} e^{-2i \phi_T^W}$$

Analysis of CP eigenstates (ii)

mode	η_{CP}	T	CS	P_q	W_{EX}
$D^0 \to K^+ K^-$	+1	$V_{cs}V_{us}^*$		$V_{cq}V_{uq}^*$	
$D^0 \to K^0_S K^0_S$	+1				$V_{cs}V_{us}^*$
$D^0 \to \pi^+ \pi^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
$D^0 ightarrow \pi^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^{*}$
$D^0 o ho^+ ho^-$	+1	$V_{cd}V_{ud}^*$		$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^{*}$
$D^0 ightarrow ho^0 ho^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
$D^0 ightarrow \phi \pi^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^*$	
$D^0 o \phi ho^0$	+1		$V_{cs}V_{us}^*$	$V_{cq}V_{uq}^*$	
$D^0 \to f^0(980)\pi^0$	$^{-1}$		$V_{cs}V_{us}^* + V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	
$D^0 o ho^0 \pi^0$	+1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
$D^0 o a^0 \pi^0$	-1		$V_{cd}V_{ud}^*$	$V_{cq}V_{uq}^*$	$V_{cd}V_{ud}^*$
$D^0 \to K^0_S K^0_S K^0_S$	+1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
$D^0 \rightarrow K^0_L K^0_S K^0_S$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
$D^0 \to K^0_L K^0_L K^0_S$	+1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$
$D^0 \to K^0_L K^0_L K^0_L$	-1				$V_{cs}V_{ud}^* + V_{cd}V_{us}^*$

Analysis of CP eigenstates (iii)

Amplitude to order λ^6 :

$$V_{cs}V_{us}^{*} = \lambda - \frac{\lambda^{3}}{2} - \left(\frac{1}{8} + \frac{A^{2}}{2}\right)\lambda^{5},$$

$$REAL$$

$$V_{cd}V_{ud}^{*} = -\lambda + \frac{\lambda^{3}}{2} + \frac{\lambda^{5}}{8} + \frac{A^{2}\lambda^{5}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})]$$

$$V_{cb}V_{ub}^{*} = A^{2}\lambda^{5}(\bar{\rho} + i\bar{\eta}),$$

$$COMPLEX$$

$$V_{cs}V_{ud}^{*} = 1 - \lambda^{2} - \frac{A^{2}\lambda^{4}}{2} + A^{2}\lambda^{6}\left[\frac{1}{2} - \bar{\rho} - i\bar{\eta}\right]$$

$$V_{cd}V_{us}^{*} = -\lambda^{2} + \frac{A^{2}\lambda^{6}}{2}[1 - 2(\bar{\rho} + i\bar{\eta})].$$

$$V_{cd}V_{us}^{*} \ln qe \ phase \ : \ V_{ub} \rightarrow \gamma_{c} = \gamma$$

$$V_{cd}V_{ud}^{*} \ln qV_{cd}V_{us}^{*} \ small \ phase \ :V_{cd} \rightarrow \beta_{c}$$

$$V_{cs}V_{ud}^{*} \ small \ phase \ entering \ at \ O(\lambda^{6})$$

10

 $D_0 \rightarrow K^+ K^-$

To first order one would expect to measure an asymmetry consistent with zero: \rightarrow cross check of detector reconstruction and calibration \rightarrow ideal mode to use when searching for new physics (NP) 11

Penguin topologies are DCS loops while the Tree amplitude is CS

 \rightarrow Penguin contributions could in principle be ignored, but.. \rightarrow A complete theoretical analysis is necessary if one wants to extract the weak phase and disentangle the c \rightarrow s \rightarrow u penguin (See A. Bevan talk) 12

ii) Numerical analysis

TDCPV in charm: numerical analysis

∆ t [ps]

Results: precision on ßc,eff

		$\mathrm{Super}B$		LHCb
Parameter	SL	SL + K	$\Upsilon(4S)$	
$\phi = \arg(\lambda_f)$	8.0°	3.4°	2.2°	2.3°
$\phi_{CP} = \phi_{KK} - \phi_{\pi\pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c,eff}$	4.7°	2.0°	1.3°	1.4°

Results: precision on ßc,eff

		$\mathrm{Super}B$		LHCb
Parameter	SL	SL + K	$\Upsilon(4S)$	
$\phi = \arg(\lambda_f)$	8.0°	3.4°	2.2°	2.3°
$\phi_{CP} = \phi_{KK} - \phi_{\pi\pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c,eff}$	4.7°	2.0°	1.3°	1.4°

With this same method we are also able to provide a measurement of the mixing phase by using the channel K^+K^- :

$$\phi_{MIX} \approx 5^{\circ}$$
at charm threshold using SL tagging $\phi_{MIX} \approx 2.5^{\circ}$ at charm threshold using SL+K tagging $\phi_{MIX} \approx 1.35^{\circ}$ at the $\Upsilon(4S)$

Niels Bohr: An expert is a man who has made all the mistakes which can be made, in a narrow field.

iii) FastSim (see Matteo Rama talk/tutorial)

FastSim: Semi-Leptonic Tag at Charm Threshold ($D^0 \rightarrow K^+ K^-$)

Black: signal generated with no cuts, Magenta: 4 ch. tracks required, Blue: 4 ch. Tracks + 3 Kaons, Red: 4 ch. Tracks + 3 Kaons, and D⁰ momentum constraints.

FastSim: Semi-Leptonic Tag at Charm Threshold ($D^0 \rightarrow \pi^+ \pi^-$)

Black: signal generated with no cuts, Magenta: 4 ch. tracks required, Blue: 4 ch. Tracks + 2 Pions, Red: 4 ch. Tracks + 2 Pions, and D⁰ momentum constraints.

FastSim: Tagging at the $\Upsilon(4S)$, $(D^0 \rightarrow \pi^+ \pi^-)$

18

Black: signal generated with no cuts, Blue: 4 ch. Tracks + 2 Pions, Red: Mass difference for D mesons as shown in the histogram below

Conclusions

We are exploring time-dependent CP asymmetries in charm and we defined a measurement for the $\beta_{c,eff}$ angle in the charm triangle.

After defining the tagging for charm, we have studied a number of possible final states.

Using the developed formalism we simulated pseudo-experiments assuming SuperB luminosity and we have shown that a possible measurement for TDCP asymmetries will be reasonable.

We simulated pseudo-experiments and applied the formalism for uncorrelated mesons for both SuperB and LHCb and we compared the obtained results. We highlight that a precision measurement of any timedependent effect will require a detailed understanding of the background.

Our method may be used to measure the mixing phase in $D^0 \rightarrow K^+ K^-$.

We started to generate events with FastSim, and shown how to remove background(s) for both charm threshold and $\Upsilon(4S)$.

Conclusions: pictures

$$A^{Phys}(\Delta t) = \frac{\overline{\Gamma^{Phys}}(\Delta t) - \Gamma^{Phys}(\Delta t)}{\overline{\Gamma^{Phys}}(\Delta t) + \Gamma^{Phys}(\Delta t)} = -\Delta \omega + \frac{(D + \Delta \omega)e^{\Delta \Gamma |\Delta t|/2}(|\lambda_f|^2 - 1)\cos\Delta M\Delta t + 2\Im(\lambda_f)\sin\Delta M\Delta t}{(1 + |\lambda_f|^2)h_+/2 + h_-\Re(\lambda_f)}$$

		LHCb		
Parameter	SL	SL + K	$\Upsilon(4S)$	
$\phi = \arg(\lambda_f)$	8.0°	3.4°	2.2°	2.3°
$\phi_{CP} = \phi_{KK} - \phi_{\pi\pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c,eff}$	4.7°	2.0°	1.3°	1.4°

 $\phi_{MIX} \approx 5^{\circ}$ at charm threshold using SL tagging $\phi_{MIX} \approx 2.5^{\circ}$ at charm threshold using SL+K tagging $\phi_{MIX} \approx 1.35^{\circ}$ at the Υ (4S)

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story?

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story? A1. Who knows? Need to be checked...

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?
A2. No, there are TWO unique environments where.. : SuperB and Charm..

for your attention!

an sub-States

Ŧ