$1{ }^{1 \text { st }}$ SuperB Collaboration Meeting

 13-16 September 2011 Queen Mary, University of London (UK)
Time-Dependent CP Violation in Charm

Queen Mary University of London

15/09/2011
A. Bevan / G. Inguglia / B. Meadows Particle Physics Research Centre Queen Mary University of London g.inguglia@qmul.ac.uk

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story?

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?

i) Theory + Experiments

ii) Numerical analysis
iii) FastSim and Charm
i) Theory + Experiments

...We explore Time-dependent CP

 asymmetries formalism in the charm sector for the first time...Time-dependent $C P$ asymmetries in D and B decays
A. J. Bevan and G. Inguglia

Queen Mary, University of London, Mile End Road, E1 4NS, United Kingdom
B. Meadows

University of Cincinnati, Cincinnati, Ohio 45221, USA
(Dated: July 19, 2011)
The measurement of time-dependent $C P$ asymmetries in charm decays can provide a unique insight into the flavor changing structure of the Standard Model. We examine a number of different $C P$ eigenstate decays of D mesons and describe a method that can be used to measure timedependent $C P$ asymmetries at existing and future experiments, with a preliminary assessment,

BEVAN - INGUGLIA - MEADOWS
Queen Mary ArXiv: 1106.5075v2 University of London

Buras parametrization of the CKM matrix up to λ^{5}

PDG standard parametriazation with

$$
V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$$
V_{C K M}=\left|\begin{array}{ccc}
1-\lambda^{2} / 2-\lambda^{4} / 8 & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta})+A \lambda^{5}(\bar{\rho}-i \bar{\eta}) / 2 \\
-\lambda+A^{2} \lambda^{5}[1-2(\bar{\rho}+i \bar{\eta})] & 1-\lambda^{2} / 2-\lambda^{4}\left(1+4 A^{2}\right) / 8 & A \lambda^{2} \\
A \lambda^{3}[1-(\bar{\rho}+i \bar{\eta})] & -A \lambda^{2}+A \lambda^{4}[1-2(\bar{\rho}+i \bar{\eta}) / 2 & 1-\lambda^{2} \lambda^{4} / 2
\end{array}\right|+O\left(\lambda^{6}\right)
$$

TAB 1

UTFit

λ	0.22545 ± 0.00065
A	0.8095 ± 0.0095
ρ	0.135 ± 0.021
η	0.367 ± 0.013
$\bar{\rho}$	0.132 ± 0.020
$\bar{\eta}$	0.358 ± 0.012

CKM Fitter
0.22543 ± 0.00077 $0.812_{-0.027}^{+0.013}$
0.144 ± 0.025
$0.342+0.016$

Why do we express the matrix in terms of $\bar{\rho} \bar{\eta}$?

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

$$
V_{c b} \begin{array}{ll}
\alpha_{c}=\arg \left[\frac{-V_{u b}^{*} V_{c b}}{V_{u s}^{*} V_{c s}}\right]=(111.5 \pm 4.2)^{\circ} \\
\beta_{c}=\arg \left[\frac{-V_{u d}^{*} V_{c d}}{V_{u d}^{*} V_{c s}}\right]=(0.035 \pm 0.0001)^{\circ} & \\
\gamma_{c}=\arg \left[\frac{-V_{u b}^{*} V_{c b}}{V_{u d}^{*} V_{c d}}\right]=(68.4 \pm 0.1)^{\circ} & \text { AVERAGE } \\
\text { OF VALUE } \\
\text { IN TAB 1 }
\end{array}
$$

Unitarity triangles

Unitarity conditions of the CKM matrix are translated into 6 possible unitary triangles in the complex plane. We illustrate two here.

$$
V_{u d}^{*} V_{u b}+V_{c d}^{*} V_{c b}+V_{t d}^{*} V_{t b}=0
$$

The value of $\sin (2 \beta)$ differs from the predicted value (see paper) by 3.2 standard deviation: need to be checked!
CKM mechanism "maybe" is breaking down.. arXiv: 1104.2117v2

Constraint on the cu triangle

cu triangle

$V_{u s}^{*} V_{c s}$

It is possible to constrain the apex of the $c u$ triangle in two ways:

1) by constraining two internal angles
2) by measuring the sides

Normalizing the baseline to 1 , so dividing by $V_{u s}^{*} V_{c s}$

$$
\gamma_{c}=(68.4 \pm 0.1)^{\circ} \quad \text { from CKM prediction }
$$

$$
+ \text { any measurement of } \beta_{c} \rightarrow \text { constraint on the }
$$ apex of the triangle

cu triangle

$$
\begin{gathered}
X+i Y=1+\frac{A^{2} \lambda^{5}(\bar{\rho}+i \bar{\eta})}{\lambda-\lambda^{3} / 2-\lambda^{5}\left(1 / 8+A^{2} / 2\right)} \\
X=1.00025 \\
Y=0.00062
\end{gathered}
$$

Time-dependent formalism

Neutral meson systems exhibit mixing of mass eigenstates $\left|P_{1,2}\right\rangle$ where:

$$
\begin{aligned}
& i \frac{d}{d t}\left(\left\lvert\, \begin{array}{l}
\left|P_{1}\right\rangle \\
\left|P_{2}\right\rangle
\end{array}\right.\right)=\left(\begin{array}{l}
M_{11}-\frac{i}{2} \Gamma_{11} \\
M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} \\
M_{22}^{*}-\frac{i}{2} \Gamma_{22}^{*}
\end{array}\right)\binom{\left|P^{0}\right\rangle}{\left|\overline{P^{0}}\right\rangle}=H_{\text {eff }}\left(\begin{array}{l}
\left|\frac{\left.P^{0}\right\rangle}{\left|P^{0}\right\rangle}\right\rangle
\end{array}\right) \\
& \left|P_{1,2}>=p\right| P^{0}> \pm q \left\lvert\, \overline{P^{0}}>\longrightarrow q^{2}+p^{2}=1 \quad \begin{array}{l}
\text { normalize the wavefunction } \\
\frac{q}{p}=\sqrt{\frac{m_{12}^{*}-i \Gamma_{12}^{*} / 2}{M_{12}-i \Gamma_{12} / 2}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\langle\Psi(t) \mid \Psi(t)\rangle=-\langle\Psi(t)| \Gamma|\Psi(t)\rangle
\end{aligned}
$$

Correlated mesons: semi-leptonic

 taggingA run at $\Psi($ 3772) can be made where the mistag probability is effectively zero

PDG 2010
$B R\left(D^{0} \rightarrow K^{(*)-} e^{+} v_{e}\right)=(2.17 \pm 0.16) 3.55 \pm 0.05$
$B R\left(D^{0} \rightarrow K^{(*)-} \mu^{+} v_{\mu}\right)=(1.98 \pm 0.24) 3.31 \pm 0.13$

$$
\begin{gathered}
B R\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(1.397 \pm 0.026) \times 10^{-3} \\
B R\left(D^{0} \rightarrow K^{+} K^{-}\right)=(3.94 \pm 0.07) \times 10^{-3}
\end{gathered}
$$

D mesons are produced in a correlated antisymmetric wave function. The Einstein-Podolsky-Rosen paradox implies that if at a time $t_{t a g}$ one decays then we identify the other as well.

At time $t_{\text {TAG }}$ the decays $D \rightarrow K^{(+)} l^{+(-)} v_{l}$ account for 11% of all D decays and unambiguously assigns the flavour: D^{0} is associated to $a l^{+}, \overline{D^{0}}$ is associated to $a I^{-}$ Assuming PDG values for BR and CLEO_c efficiency for double tagging we expect with semi-leptonic tag ~ 158000 for $D^{0} \rightarrow \pi^{+} \pi^{-}$

Time-dependent formalism (ii)

The time-dependence of decays of $\left.\mathrm{P}^{0} \mathrm{P}^{0}\right)$ to final state $\mid \mathrm{f}>$ are:
$\left[\Gamma\left(P^{0} \rightarrow f\right) \propto e^{-\Gamma_{1}|\Delta t|}\left[\frac{h_{+}}{2}+\frac{\mathfrak{R}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} h_{-}+e^{[\Delta \Gamma|\Delta t| / 2]}\left(\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \cos \Delta M \Delta t-\frac{2 \mathfrak{J}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \sin \Delta M \Delta t\right)\right]\right.$
$-\bar{\Gamma}\left(\overline{P^{0}} \rightarrow f\right) \propto e^{-\Gamma_{1}|\Delta t|}\left[\frac{h_{+}}{2}+\frac{\mathfrak{R}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} h_{-}-e^{[\Delta \Gamma|\Delta t| / 2]}\left(\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \cos \Delta M \Delta t-\frac{2 \mathfrak{J}\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}} \sin \Delta M \Delta t\right)\right]$
where: $\quad h_{+-}=1 \pm e^{\Delta \Gamma|\Delta t|}, \quad \lambda_{f}=\frac{q}{p} \frac{\bar{A}}{A}$
λ_{f} very important!
We now obtain the time-dependent CP asymmetry
$A^{\text {Phys }}(\Delta t)=\frac{\overline{\Gamma^{\text {Phys }}}(\Delta t)-\Gamma^{\text {Phys }}(\Delta t)}{\Gamma^{\text {Phys }}(\Delta t)+\Gamma^{\text {Phys }}(\Delta t)}=-\Delta \omega+\frac{(D+\Delta \omega) e^{\Delta \Gamma|\Delta t| / 2}\left(\left|\lambda_{f}\right|^{2}-1\right) \cos \Delta M \Delta t+2 \mathfrak{J}\left(\lambda_{f}\right) \sin \Delta M \Delta t}{\left(1+\left|\lambda_{f}\right|^{2}\right) h_{+} / 2+h_{-} \Re\left(\lambda_{f}\right)}$
Where we included mistag probability effects

Uncorrelated D^{0} mesons

$$
A(t)=\frac{\bar{\Gamma}(t)-\Gamma(t)}{\bar{\Gamma}(t)+\Gamma(t)}=2 e^{\Delta \Gamma t / 2} \frac{\left(\left|\lambda_{f}\right|^{2}-1\right) \cos \Delta M t+2 \mathfrak{J}\left(\lambda_{f}\right) \sin \Delta M t}{\left(1+\left|\lambda_{f}\right|^{2}\right)\left(1+e^{\Delta \Gamma t}\right)+2 \mathfrak{R}\left(\lambda_{f}\right)\left(1-e^{\Delta \Gamma t}\right)}
$$

Mistag probability and dilution become important

$$
\begin{aligned}
& A^{\text {Phys }}(t)=\frac{\overline{\Gamma^{\text {Phys }}}(t)-\Gamma^{\text {Phys }}(t)}{\overline{\Gamma^{\text {Phys }}}(t)+\Gamma^{\text {Phys }}(t)}=+\Delta \omega+\frac{(D-\Delta \omega) e^{\Delta \Gamma t / 2}\left(\left|\lambda_{f}\right|^{2}-1\right) \cos \Delta M t+2 \mathfrak{J}\left(\lambda_{f}\right) \sin \Delta M t}{\left(1+\left|\lambda_{f}\right|^{2}\right) h_{+} / 2+h_{-} \mathfrak{R}\left(\lambda_{f}\right)} \\
& \text { The flavour tagging is accomplished } \\
& \text { by identifying a "slow" pion in the } D^{++} \rightarrow D^{0} \pi_{s}^{+} \pi_{s}^{+} \\
& \text {processes (CP and CP conjugated): } \\
& \qquad D^{*-} \rightarrow \overline{D^{0}} \pi_{s}^{-} \\
& \qquad \text { SuperB at } \boldsymbol{(4 S)} \text { and LHCb }
\end{aligned}
$$

D^{*} from $e^{+} e^{-} \rightarrow c \bar{C}$ can be separated from those coming from B's by applying a momentum cut. Clean environment. More easier to separate prompt D*

D* mesons are secondary particles produced in the primary decay of a B meson.
High background level to keep under control.
Trigger efficiency.

Analysis of CP eigenstates (i)

When exploring CP violation, ignoring long distance effects, the parameter λ may be written as:

$$
\begin{aligned}
& \lambda_{f}=\left|\frac{q}{p}\right| e^{i \phi_{M I X}}\left|\frac{\bar{A}}{A}\right| e^{i \phi_{C P}} \quad \phi_{M I X}: \text { phase of } D^{0} \overline{D^{0}} \text { mixing } \\
& A=|T| e^{i\left(\phi_{T}+\delta_{T}\right)}+|C S| e^{i\left(\phi_{C S}+\delta_{C S}\right)}+|W| e^{i\left(\phi_{W}+\delta_{w}\right)}+\sum_{q=d, s, b}\left|P_{q}\right| e^{\left(i \phi_{q}+\delta_{q}\right)}
\end{aligned}
$$

The following processes, as we will see, are tree dominated

$$
D^{0} \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}, K^{+} K^{-} K^{0}, K^{0} \pi^{+} \pi^{-}
$$

Assuming negligible the contribution due to P/CS/W amplitudes, then:

$$
\lambda_{f}=\left|\frac{q}{p}\right| e^{i \phi_{M I X}} e^{-2 \mathrm{i} \phi_{T}{ }^{w}}
$$

Analysis of CP eigenstates

\longrightarrow| mode | $\eta_{C P}$ | T | $C S$ | P_{q} | $W_{E X}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $D^{0} \rightarrow K^{+} K^{-}$ | +1 | $V_{c s} V_{u s}^{*}$ | | $V_{c q} V_{u q}^{*}$ | |
| $D^{0} \rightarrow K_{S}^{0} K_{S}^{0}$ | +1 | | | | $V_{c s} V_{u s}^{*}$ |
| $D^{0} \rightarrow \pi^{+} \pi^{-}$ | +1 | $V_{c d} V_{u d}^{*}$ | | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow \pi^{0} \pi^{0}$ | +1 | | $V_{c d} V_{u d}^{*}$ | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow \rho^{+} \rho^{-}$ | +1 | $V_{c d} V_{u d}^{*}$ | | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow \rho^{0} \rho^{0}$ | +1 | | $V_{c d} V_{u d}^{*}$ | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow \phi \pi^{0}$ | +1 | | $V_{c s} V_{u s}^{*}$ | $V_{c q} V_{u q}^{*}$ | |
| $D^{0} \rightarrow \phi \rho^{0}$ | +1 | $V_{c s} V_{u s}^{*}$ | $V_{V_{q} V_{u q}^{*}}$ | | |
| $D^{0} \rightarrow f^{0}(980) \pi^{0}$ | -1 | $V_{c s} V_{u s}^{*}+V_{c d} V_{u d}^{*} V_{c q} V_{u q}^{*}$ | | | |
| $D^{0} \rightarrow \rho^{0} \pi^{0}$ | +1 | | $V_{c d} V_{u d}^{*}$ | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow a^{0} \pi^{0}$ | -1 | | $V_{c d} V_{u d}^{*}$ | $V_{c q} V_{u q}^{*}$ | $V_{c d} V_{u d}^{*}$ |
| $D^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}$ | +1 | | | | $V_{c s} V_{u d}^{*}+V_{c d} V_{u s}^{*}$ |
| $D^{0} \rightarrow K_{L}^{0} K_{S}^{0} K_{S}^{0}$ | -1 | | | $V_{c s} V_{u d}^{*}+V_{c d} V_{u s}^{*}$ | |
| $D^{0} \rightarrow K_{L}^{0} K_{L}^{0} K_{S}^{0}$ | +1 | | | $V_{c s} V_{u d}^{*}+V_{c d} V_{u s}^{*}$ | |
| $D^{0} \rightarrow K_{L}^{0} K_{L}^{0} K_{L}^{0}$ | -1 | | | $V_{c s} V_{u d}^{*}+V_{c d} V_{u s}^{*}$ | |

Analysis of CP eigenstates (iii)

Amplitude to order λ^{6} :

$$
\begin{gathered}
\longrightarrow \begin{array}{l}
V_{c s} V_{u s}^{*}=\lambda-\frac{\lambda^{3}}{2}-\left(\frac{1}{8}+\frac{A^{2}}{2}\right) \lambda^{5}, \\
\mathrm{REAL}
\end{array} \\
\longrightarrow \begin{array}{l}
V_{c d} V_{u d}^{*}=-\lambda+\frac{\lambda^{3}}{2}+\frac{\lambda^{5}}{8}+\frac{A^{2} \lambda^{5}}{2}[1-2(\bar{\rho}+i \bar{\eta})] \\
V_{c b} V_{u b}^{*}=A^{2} \lambda^{5}(\bar{\rho}+i \bar{\eta}), \\
\text { COMPLEX }
\end{array} \\
\longrightarrow V_{c s} V_{u d}^{*}=1-\lambda^{2}-\frac{A^{2} \lambda^{4}}{2}+A^{2} \lambda^{6}\left[\frac{1}{2}-\bar{\rho}-i \bar{\eta}\right] \\
V_{c d} V_{u s}^{*}=-\lambda^{2}+\frac{A^{2} \lambda^{6}}{2}[1-2(\bar{\rho}+i \bar{\eta})] . \\
\qquad \begin{array}{l}
V_{c b} V_{u b}^{*} \text { large phase : } V_{u b} \rightarrow \gamma_{c}=\gamma \\
V_{c d} V_{u d}^{*} \text { and } V_{c d} V_{u s}^{*} \text { small phase }: V_{c d} \rightarrow \beta_{c} \\
V_{c s} V_{u d}^{*} \text { small phase entering at } O\left(\lambda^{6}\right)
\end{array}
\end{gathered}
$$

$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$

Real

To first order one would expect to measure an asymmetry consistent with zero:
\rightarrow cross check of detector reconstruction and calibration
\rightarrow ideal mode to use when searching for new physics (NP)

$D^{0} \rightarrow \pi^{+} \pi^{-} \quad$ (i)

Gluonic penguin topology

$$
V_{c d} V_{u d}^{*}+V_{c s} V_{u s}^{*}+V_{c b} V_{u b}^{*}
$$

$$
\downarrow \quad \begin{aligned}
& \downarrow \\
& \downarrow \\
& \\
& \text { Real }
\end{aligned}
$$

$$
V_{c d} V_{u d}^{*}=-\lambda+\frac{\lambda^{3}}{2}+\frac{\lambda^{5}}{8}+\frac{A^{2} \lambda^{5}}{2}[1-2(\bar{\rho}+i \bar{\eta})] \longrightarrow V_{c d} V_{u d}^{*} \rightarrow \beta_{c}
$$

Penguin topologies are DCS loops while the Tree amplitude is CS
\rightarrow Penguin contributions could in principle be ignored, but..
\rightarrow A complete theoretical analysis is necessary if one wants to extract the weak phase and disentangle the $\mathbf{c} \rightarrow \mathbf{s} \rightarrow \mathbf{u}$ penguin (See A. Bevan talk)
ii) Numerical analysis

TDCPV in charm: numerical analysis

Results: precision on $\beta_{c, \text { eff }}$

	Super B			LHCb
Parameter	SL	$\mathrm{SL}+\mathrm{K}$	$\Upsilon(4 S)$	
$\phi=\arg \left(\lambda_{f}\right)$	8.0°	3.4°	2.2°	2.3°
$\phi_{C P}=\phi_{K K}-\phi_{\pi \pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c, \text { eff }}$	4.7°	2.0°	1.3°	1.4°

Results: precision on $\beta_{c \text {,eff }}$

	Super B			LHCb
Parameter	SL	$\mathrm{SL}+\mathrm{K}$	$\Upsilon(4 S)$	
$\phi=\arg \left(\lambda_{f}\right)$	8.0°	3.4°	2.2°	2.3°
$\phi_{C P}=\phi_{K K}-\phi_{\pi \pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c, \text { eff }}$	4.7°	2.0°	1.3°	1.4°

With this same method we are also able to provide a measurement of the mixing phase by using the channel $\mathrm{K}^{+} \mathrm{K}^{-}$:

$$
\begin{array}{cl}
\phi_{M I X} \approx 5^{\circ} & \text { at charm threshold using SL tagging } \\
\phi_{M I X} \approx 2.5^{\circ} & \text { at charm threshold using SL+K tagging } \\
\phi_{M I X} \approx 1.35^{\circ} & \text { at the } \Upsilon(4 \mathrm{~S})
\end{array}
$$

Niels Bohr: An expert is a man who has made all the mistakes which can be made, in a narrow field.

iii) FastSim (see Matteo Rama talk/tutorial)

FastSim: Semi-Leptonic Tag at Charm Threshold ($\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$)

Black: signal generated with no cuts, Magenta: 4 ch. tracks required, Blue: 4 ch. Tracks + 3 Kaons, Red: 4 ch. Tracks

+ 3 Kaons, and D^{0} momentum constraints.

16

FastSim: Semi-Leptonic Tag at Charm Threshold ($D^{0} \rightarrow \pi^{+} \pi^{-}$)

Black: signal generated with no cuts, Magenta: 4 ch. tracks required, Blue: 4 ch. Tracks + 2 Pions, Red: 4 ch. Tracks

+ 2 Pions, and D^{0} momentum constraints.

FastSim: Tagging at the $\mathrm{r}(4 \mathrm{~S})$, $\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

$$
\begin{gathered}
e^{+} e^{-} \rightarrow Y(4 \mathrm{~S}) \rightarrow B^{0} \overline{B^{0,}} \\
\overline{B^{0}} \rightarrow D^{*+} K^{-}, \\
D^{*+} \rightarrow D^{0} \pi_{s}^{+}, \\
D^{0} \rightarrow \pi^{+} \pi^{-} \\
\text {all B.R. }=100
\end{gathered}
$$

Black: signal generated with no cuts, Blue: 4 ch. Tracks + 2 Pions, Red: Mass difference for D mesons as shown in the histogram below

Conclusions

We are exploring time-dependent CP asymmetries in charm and we defined a measurement for the βc,eff angle in the charm triangle.

After defining the tagging for charm, we have studied a number of possible final states.

Using the developed formalism we simulated pseudo-experiments assuming SuperB luminosity and we have shown that a possible measurement for TDCP asymmetries will be reasonable.

We simulated pseudo-experiments and applied the formalism for uncorrelated mesons for both SuperB and LHCb and we compared the obtained results. We highlight that a precision measurement of any timedependent effect will require a detailed understanding of the background.

Our method may be used to measure the mixing phase in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$.
We started to generate events with FastSim, and shown how to remove background(s) for both charm threshold and $\Upsilon(4 \mathrm{~S})$.

Conclusions: pictures

Semi-leptonic tagging

$A^{\text {Phys }}(\Delta t)=\frac{\overline{\Gamma^{\text {Phys }}}(\Delta t)-\Gamma^{\text {Phys }}(\Delta t)}{\overline{\Gamma^{\text {Phys }}}(\Delta t)+\Gamma^{\text {Phys }}(\Delta t)}=-\Delta \omega+\frac{(D+\Delta \omega) e^{\Delta \Gamma|\Delta t| / 2}\left(\left|\lambda_{f}\right|^{2}-1\right) \cos \Delta M \Delta t+2 \mathfrak{J}\left(\lambda_{f}\right) \sin \Delta M \Delta t}{\left(1+\left|\lambda_{f}\right|^{2}\right) h_{+} / 2+h_{-} \mathfrak{R}\left(\lambda_{f}\right)}$

	Super B			LHCb
Parameter	SL	SL +K	$\Upsilon(4 S)$	
$\phi=\arg \left(\lambda_{f}\right)$	8.0°	3.4°	2.2°	2.3°
$\phi_{C P}=\phi_{K K}-\phi_{\pi \pi}$	9.4°	3.9°	2.6°	2.7°
$\beta_{c, \text { eff }}$	4.7°	2.0°	1.3°	1.4°

$\phi_{M I X} \approx 5^{0}$ at charm threshold using SL tagging
$\phi_{M I X} \approx 2.5^{\circ}$ at charm threshold using SL+K tagging $\phi_{M I X} \approx 1.35^{\circ}$ at the $\mathrm{r}(4 \mathrm{~S})$

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story?

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?

Q1. In the standard model, CP violation originates from the complex phase naturally occurring in the CKM matrix: is this the end of the story?
A1. Who knows? Need to be checked...

Q2. Is there a unique environment where to perform precision tests of the CKM mechanism and where to look for CP violation and new physics?
A2. No, there are TWO unique environments where.. : SuperB and Charm..

