Sensitivity studies for mixing and CPV in charm at $\psi(3770)$ vs $\Upsilon(4S)$

M. Giorgi, F. Martínez-Vidal, N. Neri, A. Oyanguren, M. Rama, P. Ruiz, P. Villanueva

1st SuperB Collaboration Meeting, QMUL (UK), 2011

Outline

- General considerations
- Time dependences
- FastSim studies
- Sensitivity studies and results
- Summary and next steps

General considerations

• At Y(4S)

- ≻ Flavor tagged D⁰ through D^{*+}→D⁰π⁺ decay. Flavor mistag ≈ 0.2%
- ➤ We denote the D* flavor tag with label *IX*
- ► D⁰ can be reconstructed in flavor *l*X, CP, K π and multibody (e.g. Ks $\pi\pi$) final states. Relatively high purity due to m(D⁰) and $\Delta m=m(D^{*+})-m(D^{0})$
- > Proper time resolution is about $\tau(D^0)/4 \approx 0.1$ ps
- At $\psi(3770)$
 - > Coherent $D^0\overline{D}^0$ production
 - Both D mesons can be reconstructed in *l*X, CP, Kπ and Ksππ final states, with very low background
 - Flavor mistag ≈ 0.2% with eX, but ≈ 2% with µX (large µ misid @ low p)
 - Time-dependent measurements

require larger CM boost compared to the $\Upsilon(4S)$ case to achieve time resolution, but reconstruction efficiency decreases with large CM boost. Need to determine the optimal boost value.

Double tags @ $\Psi(3770)$ Modes with D* tag @ $\Upsilon(4S)$

	CP-	Κπ	lX	Κsππ
CP+	Χ	Χ	XX	Х
CP-		Χ	XX	Х
Κπ		Χ	XX	Х
lX			XX	XX
Κsππ				Х

Time dependences

• We have derived the time-dependence for all combination of double tags

	CP-	Κπ	lX	Κsππ
CP+	Х	Х	XX	Χ
CP-		Χ	XX	Χ
Κπ		Х	XX	Х
lX			XX	XX
Κsππ				Χ

Complete expressions

Simplified expressions with CPT invariance, CP conserved in decay, and second order in x, y

Example: flavor tag

At $\psi(3770)$: Identical time-dependence wrt $\Upsilon(4S)$ when using flavor tag ! $\frac{d\Gamma[V_{\text{phys}}(t_1, t_2) \rightarrow f_1 f_2]/dt}{e^{-\Gamma|\Delta t|} \mathcal{N}_{f_1 f_2}} = (|a_+|^2 + |a_-|^2) \cosh(y\Gamma\Delta t) + (|a_+|^2 - |a_-|^2) \cos(x\Gamma\Delta t) \\ -2\mathcal{R}e((a_+^*a_-) \sinh(y\Gamma\Delta t) + 2\mathcal{I}m(a_+^*a_-) \sin(x\Gamma\Delta t)) \\ a_+ \equiv \bar{A}_{f_1}A_{f_2} - A_{f_1}\bar{A}_{f_2}, \\ a_- \equiv -\sqrt{1-z^2} \left(\frac{q}{p}\bar{A}_{f_1}\bar{A}_{f_2} - \frac{p}{q}A_{f_1}A_{f_2}\right) + z \left(\bar{A}_{f_1}A_{f_2} + A_{f_1}\bar{A}_{f_2}\right)$ $z = CPT \text{ violation parameter} \\ q, p = \text{ indirect CP violation parameters}$ At $\Upsilon(4S)$ using D*+ tagged events:

$$\frac{d\Gamma[M_{\rm phys}^0(t) \to f]/dt}{e^{-\Gamma t} \mathcal{N}_f} = \frac{(|A_f|^2 + |(q/p)\bar{A}_f|^2)\cosh(y\Gamma t) + (|A_f|^2 - |(q/p)\bar{A}_f|^2)\cos(x\Gamma t)}{+2\mathcal{R}e((q/p)A_f^*\bar{A}_f)\sinh(y\Gamma t) - 2\mathcal{I}m((q/p)A_f^*\bar{A}_f)\sin(x\Gamma t)}$$

5

Example: double K π and *l***X tags**

Double $K^{\mp}\pi^{\pm}$ decays

$$R_{odd}(K^{-}\pi^{+}, K^{-}\pi^{+}; \Delta t) = |A_{K^{-}\pi^{+}}|^{4} \left|\frac{p}{q}\right|^{2} \left[1 + \left|\frac{q}{p}\right|^{4} R_{D}^{2} - 2R_{D} \left|\frac{q}{p}\right|^{2} \cos[2(\delta_{K\pi} - \phi)]\right] \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$
$$R_{odd}(K^{+}\pi^{-}, K^{+}\pi^{-}; \Delta t) = |A_{K^{+}\pi^{-}}|^{4} \left|\frac{q}{p}\right|^{2} \left[1 + \left|\frac{p}{q}\right|^{4} R_{D}^{2} - 2R_{D} \left|\frac{p}{q}\right|^{2} \cos[2(\delta_{K\pi} + \phi)]\right] \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$

Double semileptonic decays

$$R_{odd}(l^{+}X^{-}, l^{+}X^{-}; \Delta t) = |A_{l+X^{-}}|^{4} \left|\frac{p}{q}\right|^{2} \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$
$$R_{odd}(l^{-}X^{+}, l^{-}X^{+}; \Delta t) = |A_{l-X^{+}}|^{4} \left|\frac{q}{p}\right|^{2} \frac{x^{2} + y^{2}}{2} (\Gamma \Delta t)^{2}$$

6

Example: $K\pi$ vs CP tag

 $K^{\mp}\pi^{\pm}$ decays with CP tag

$$\begin{aligned} R_{odd}(S_{\eta}, K^{-}\pi^{+}; \Delta t) &= \left| A_{S_{\eta}} A_{K^{-}\pi^{+}} \right|^{2} \left\{ 2 \left(1 + 2\eta \sqrt{R_{D}} \cos \delta_{K\pi} + R_{D} \right) \right. \\ &+ \left[\left(\eta \left| \frac{p}{q} \right| \cos \phi + \sqrt{R_{D}} \cos(\delta_{K\pi} - \phi) \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + R_{D} \left| \frac{q}{p} \right| \cos \phi \right) y \right. \\ &+ \left(-\eta \left| \frac{p}{q} \right| \sin \phi + \sqrt{R_{D}} \sin(\delta_{K\pi} - \phi) \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + R_{D} \left| \frac{q}{p} \right| \sin \phi \right) x \right] (\Gamma \Delta t) \\ &+ \frac{1}{2} \left[\left(\left(1 + \left| \frac{p}{q} \right|^{2} \right) + 2\eta \sqrt{R_{D}} \left(\cos \delta_{K\pi} + \cos(\delta_{K\pi} - 2\phi) \right) + R_{D} \left(1 + \left| \frac{q}{p} \right|^{2} \right) \right) y^{2} \\ &- \left(\left(1 - \left| \frac{p}{q} \right|^{2} \right) + 2\eta \sqrt{R_{D}} \left(\cos \delta_{K\pi} - \cos(\delta_{K\pi} - 2\phi) \right) + R_{D} \left(1 - \left| \frac{q}{p} \right|^{2} \right) \right) x^{2} \right] (\Gamma \Delta t)^{2} \right\} \end{aligned}$$

Example: Ksππ vs CP tag

$$\begin{split} R_{odd}(S_{\eta}, K_{S}^{0}h^{+}h^{-}; \Delta t) &= \left|A_{S_{\eta}}\right|^{2} \left\{ 2\left(|A_{f}|^{2} + |\bar{A}_{f}|^{2} - 2\eta \mathcal{R}e(A_{f}^{*}\bar{A}_{f})\right) \\ &+ 2\left[\left(\left|\frac{p}{q}\right|\left(\cos\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f}) - \sin\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f}) - \eta\cos\phi|A_{f}|^{2}\right)\right) + \\ &+ \left|\frac{q}{p}\right|\left(\cos\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f}) - \sin\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f}) - \eta\cos\phi|\bar{A}_{f}|^{2}\right)\right) y \\ - \left(\left|\frac{p}{q}\right|\left(-\cos\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f}) - \sin\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f} + \eta\sin\phi|A_{f}|^{2})\right) + \\ &+ \left|\frac{q}{p}\right|\left(\cos\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f}) + \sin\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f}) - \eta\sin\phi|\bar{A}_{f}|^{2}\right)\right) x\right](\Gamma\Delta t) \\ &+ \frac{1}{2}\Big[\left(|A_{f}|^{2}\left(1 + \left|\frac{p}{q}\right|^{2}\right) + |\bar{A}_{f}|^{2}\left(1 + \left|\frac{q}{p}\right|^{2}\right) - 4\eta\cos\phi\left(\cos\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f}) - \sin\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f})\right)\right) y^{2} \\ &- \left(|A_{f}|^{2}\left(1 - \left|\frac{p}{q}\right|^{2}\right) + |\bar{A}_{f}|^{2}\left(1 - \left|\frac{q}{p}\right|^{2}\right) - 4\eta\sin\phi\left(\sin\phi\mathcal{R}e(A_{f}^{*}\bar{A}_{f}) + \cos\phi\mathcal{I}m(A_{f}^{*}\bar{A}_{f})\right)\right) x^{2}\Big](\Gamma\Delta t)^{2}\Big\} \end{split}$$

8

Example: double Ksππ tag

$$\begin{split} R_{odd}(K_{S}^{0}h^{+}h^{-}, K_{S}^{0}h^{+}h^{-}; \Delta t) &= \\ 2 \Big[|\bar{A}_{1}A_{2}|^{2} + |A_{1}\bar{A}_{2}|^{2} - 2\mathcal{R}e(\bar{A}_{1}^{*}A_{2}^{*}A_{1}\bar{A}_{2}) \Big] \\ -2 \Big\{ \Big[|A_{2}|^{2} \left(\left| \frac{p}{q} \right| \left(\cos \phi \mathcal{R}e(A_{1}\bar{A}_{1}^{*}) + \sin \phi \mathcal{I}m(A_{1}\bar{A}_{1}^{*}) - \mathcal{R}e(A_{1}\bar{A}_{1}^{*}) \right) \right) \\ &- |A_{1}|^{2} \left(\left| \frac{p}{q} \right| \left(\cos \phi \mathcal{R}e(A_{2}\bar{A}_{2}^{*}) + \sin \phi \mathcal{I}m(A_{2}\bar{A}_{2}^{*}) \right) \right) \\ &+ |\bar{A}_{2}|^{2} \left(\left| \frac{q}{p} \right| \left(\cos \phi \mathcal{R}e(\bar{A}_{1}A_{1}^{*}) - \sin \phi \mathcal{I}m(\bar{A}_{2}\bar{A}_{2}^{*}) \right) \right) \Big] y \\ &- \Big[|A_{2}|^{2} \left(\left| \frac{p}{q} \right| \left(\cos \phi \mathcal{I}m(A_{1}\bar{A}_{1}^{*}) - \sin \phi \mathcal{R}e(A_{1}\bar{A}_{1}^{*}) - \mathcal{I}m(A_{1}\bar{A}_{1}^{*}) \right) \Big) \\ &- |A_{1}|^{2} \left(\left| \frac{p}{q} \right| \left(\cos \phi \mathcal{I}m(A_{2}\bar{A}_{2}^{*}) - \sin \phi \mathcal{R}e(A_{2}\bar{A}_{2}^{*}) \right) \right) \\ &+ |\bar{A}_{2}|^{2} \left(\left| \frac{q}{p} \right| \left(\cos \phi \mathcal{I}m(\bar{A}_{1}A_{1}^{*}) + \sin \phi \mathcal{R}e(\bar{A}_{1}A_{1}^{*}) \right) \right) \Big] x \Big\} (\Gamma \Delta t) \\ &+ \frac{1}{2} \Big\{ \Big[|\bar{A}_{1}A_{2}|^{2} + |A_{1}\bar{A}_{2}|^{2} - 2\mathcal{R}e(\bar{A}_{1}^{*}A_{2}A_{1}\bar{A}_{2}) \Big] (y^{2} - x^{2}) \\ &+ \Big[\left| \frac{p}{q} \right|^{2} |A_{1}A_{2}|^{2} + \left| \frac{q}{p} \right|^{2} |\bar{A}_{1}\bar{A}_{2}|^{2} - 2 \left(\cos(2\phi)\mathcal{R}e(A_{1}^{*}A_{2}^{*}\bar{A}_{1}\bar{A}_{2}) - \sin(2\phi)\mathcal{I}m(A_{1}^{*}A_{2}^{*}\bar{A}_{1}\bar{A}_{2}) \right) \Big] (x^{2} + y^{2}) \\ &\Big\} (\Gamma \Delta t)^{2} \end{split}$$

9

FastSim studies: Δt reconstruction

- The flight lengths of the two Ds are reconstructed through a combined beam spot constrained vertex fit
- Proper times are computed from the flight lengths and the D momenta

Sensitivity studies: overview

• For $\psi(3770)$ modes

- Extrapolate CLEOc yields (includes cross-sections and selection efficiencies)
- Correct by SuperB geometrical efficiency vs CM boost
- Evaluate tripe Gaussian (TG) resolution function from FastSim vs CM boost

• For Υ(4S) modes, extrapolate BaBar yields

- ➤ TG proper time resolution of ~0.15 ps (0.1 ps core)
- Toy MC generator and fitter developed
 - For now focus on 2-body decays
- Strategy:
 - > Generate O(100) experiments for each double tag
 - Perform combined UML fit of given ensemble of 2-body double tags, fitting simultaneously for the mixing and CPV parameters: x, y, arg(q/p), |q/p|
 - Generated values are current HFAG averages
 - Assumed CP conservation in decay
 - > D \rightarrow K π strong phase kept fixed

Double tags @ $\Psi(3770)$ Modes with D* tag @ $\Upsilon(4S)$ used in this study

	CP-	Κπ	lX
CP+	X	Х	XX
CP-		Х	XX
Κπ		Х	XX
lX			XX

Sensitivity studies: expected # of events

		LB \u03c0(3770)	IB ψ(3770)	HB ψ(3770)	
Selected	$\Upsilon(4S)$	$\Psi(3770)$	$\Psi(3770)$	$\Psi(3770)$	
decays	$75\mathrm{ab}^{-1}$	$0.5 \mathrm{ab}^{-1}, \beta\gamma = 0.238$	$0.5 \mathrm{ab^{-1}}, \beta\gamma = 0.56$	$0.5 \mathrm{ab}^{-1}, \beta\gamma = 0.91$	
$l^{\pm}X^{\mp}, CP+$	19600000	569395	525890	418331	
$l^{\pm}X^{\mp}, CP-$	30900000	685053	612430	491599	
$l^{\pm}X^{\mp}, K^{\pm}\pi^{\mp}$	222900000	4181494	3862011	3072118	
	(790000)	(13798)	(12744)	(10137)	
$l^{\pm}X^{\mp}, K^0_S\pi^+\pi^-$	86600000	828850	689557	498370	
$l^{\pm}X^{\mp}, l^{\mp}X^{\pm}$	85300000	1067615	986045	784370	
	(50)	(51)	(47)	(38)	
$K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}$	N/A	1067615	986045	784370	
	(N/A)	(51)	(47)	(38)	
$CP+, K^{\mp}\pi^{\pm}$	N/A	309608	285953	227467	
$CP-, K^{\mp}\pi^{\pm}$	N/A	291814	260879	209408	
CP+, CP-	N/A	92526	82717	66397	
$CP+, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	113691	91553	66770	
$CP-, K_{S}^{0}\pi^{+}\pi^{-}$	N/A	115525	93030	67847	
$K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^-$	N/A	290342	217578	142875	
		-	•	•	
	Favored # of events				
	Suppressed # of events				

15

 $\Upsilon(4S)$

ψ(3770)

Sensitivity studies: Toy MC @ $\psi(3770)$ Arg(q/p) $RMS = 0.244 \pm 0.011$ LB $\Psi(3770)$, Events / (0.0605294) 35 Mean = -0.1794 ± 0.016 Fit result perfect resolution, Entries = 229 gen = -0.179no mistag 20 15 10 300 experiments generated -0.6 -0.4 -0.2 0.2 0.4 0.6 arg(q/p) Mixing CP violation phase (PHYS) $\times 10$ less events (CPU Arg(q/p)memory limitation) $RMS = 0.990 \pm 0.046$ Events / (0.4) 60 fit result - gen 24% converge with error Mean = -0.0757 ± 0.065 Pull = $\frac{1}{2}$ Entries = 229 matrix not definite error fit result 50 positive Understood due to the 30 smallness of x,y while 20 also fitting for Arg(q/p)and |q/p|. With mixing 10 10 times larger all fits return correct error matrix arggOverp pull

Sensitivity studies: Toy MC @ $\psi(3770)$

- LB Ψ(3770), perfect resolution, no mistag
- 300 experiments generated
- ×10 less events (CPU memory limitation)
- 24% converge with error matrix not definite positive
- Understood due to the smallness of x,y while also fitting for Arg(q/p) and |q/p|. With mixing 10 times larger all fits return correct error matrix

Sensitivity studies: Toy MC @ Y(4S)

- Y(4S), perfect resolution, no mistag
- 300 experiments generated
- ×200 less events (CPU memory limitation)
- 29% converge with error matrix not definite positive
- Understood due to the smallness of x,y while also fitting for Arg(q/p) and |q/p|. With mixing 10 times larger all fits return correct error matrix

Sensitivity studies: Toy MC @ Y(4S)

- Υ(4S), perfect resolution, no mistag
- 300 experiments generated
- ×200 less events (CPU memory limitation)
- 29% converge with error matrix not definite positive
- Understood due to the smallness of x,y while also fitting for Arg(q/p) and |q/p|. With mixing 10 times larger all fits return correct error matrix

Sensitivity studies: summary of results

Data	Time resolution	Mistag	$\sigma(x)$	$\sigma(y)$	$\sigma(\phi)$	$\sigma(q/p)$
LB $\Psi(3770)$	Perfect	0	0.00076	0.00044	0.077	0.031
LB $\Psi(3770)$ large mixing	Perfect	0	0.00059	0.00043	0.007	0.003
LB $\Psi(3770)$ no CPV	Perfect	0	0.00081	0.00027	0	0
LB $\Psi(3770)$	HB TG $(0.25/0.20 \text{ ps})$	0	0.00098	0.00046	0.077	0.034
LB $\Psi(3770)$	IB TG $(0.40/0.28 \text{ ps})$	0	0.00100	0.00051	0.078	0.035
LB $\Psi(3770)$	LB TG $(0.66/0.39 \text{ ps})$	0	0.00104	0.00054	0.103	0.037
LB $\Psi(3770)$	VLB TG $(1.27/0.76 \text{ ps})$	0	0.00107	0.00067	0.149	0.061
HB $\Psi(3770)$	HB TG $(0.25/0.20 \text{ ps})$	0	0.00118	0.00056	0.093	0.041
$ ext{IB} \Psi(3770)$	IB TG (0.40/0.28 ps)	0	0.00108	0.00054	0.084	0.037
LB $\Psi(3770)$	Perfect	2%	0.00210	0.00062	0.119	0.097
$\Upsilon(4S)$	Perfect	0	0.00021	0.00007	0.012	0.005
$\Upsilon(4S)$ large mixing	Perfect	0	0.00010	0.00008	0.001	0.001
$\Upsilon(4S)$ no CPV	Perfect	D	0.00012	0.00004	0	0
$\Upsilon(4S)$	TG (0.17/0.10 ps)	0	0.00017	0.00008	0.014	0.005
$\Upsilon(4S)$	Perfect	2%	0.00030	0.00011	0.019	0.014
Parameter So re	ensitivity @ Υ (4S) with time solution, no mistag. 75 ab ⁻¹	♥ Best se resolut	nsitivity @ ion (βγ=0.5	ψ(3770) wit 56), no mista	h time 1g. 0.5 ab⁻	1
x 0.	017%	0.11%				
y 0.	008%	0.05%		Relative ef	fect of f	lavor mistag
Arg(q/p) 0.	8 deg	4.8 deg	4.8 deg similar at $\Psi(3770)$ at) and $I(4S)$	
20 q/p 0.	5%	3.7%				

Summary

- Flavor tag at $D^0-\overline{D}^0$ threshold provides identical time-dependence than at $\Upsilon(4S)$ using D* tagging, and less events, although in a different environment
- $D^0-\overline{D}^0$ threshold is unique to provide CP, $K\pi$ and $Ks\pi\pi$ tags
- Variation of Δt resolution and geometrical acceptance vs CM boost evaluated
- Estimated the impact on physics with 2-body decays
 - \triangleright Combined fit to all 2-body double-tags allows determination of x, y, Arg(q/p), |q/p|
 - > Best sensitivity at $\Psi(3770)$ for intermediate boost, $\beta \gamma \approx 0.56$

Parameter	Sensitivity $@$ $\Upsilon(4S)$ with time resolution, no mistag. 75 ab ⁻¹	Best sensitiv resolution (ity @ ψ(3770) with time βγ=0.56), no mistag. 0.5 ab ⁻¹		
x	0.017%	0.11%			
y	0.008%	0.05%	Relative effect of flavor mistag		
Arg(q/p)	0.8 deg	4.8 deg	similar at $\Psi(3770)$ and $\Gamma(4S)$		
q/p	0.5%	3.7%			

Sensitivity at $\Psi(3770)$ with 2-body decays 5 times worse than at $\Upsilon(4S)$

> Mistag has to be understood very well. At $\Psi(3770)$ critical good separation between pions and muons at low momentum

Next steps

- Sensitivity studies on mixing and CPV parameters for 3-body decays with a time-dependent Dalitz plot analysis:
 - > Dalitz plot model independent approach is to be pursued at SuperB. For this, it is crucial to have access to Ψ (3770) data.
- Consider two different scenarios:
 - > Time-dependent measurements at $\Psi(3770)$;
 - ➤ Time-dependent measurements at Y(4S) with model independent coefficients (c_i , s_i) obtained with time-integrated Psi(3770) data.
- Setting up simulation technology for 3-body Toy MC studies.

Time-dependent Dalitz plot analyses

 Self-conjugate modes allow to extract mixing and CP violation parameters without D⁰-D

⁰ relative phase ambiguity when assuming CP is conserved in the decay.

 $A(D^0 \to K_S(p_1)\pi^-(p_2)\pi^+(p_3)) = A(\overline{D}^0 \to K_S(p_1)\pi^+(p_2)\pi^-(p_3))$

- In SM we expect CPV in the D⁰ decay due to CPV in K_S mixing at the level of 3x10⁻³.
 - Is the above assumption still valid for the precision that we aim at SuperB?
- Dalitz model uncertainty can be reduced using Psi(3770) data. Is it possible to perform a TDDP analysis in a model independent way for extracting mixing and CPV parameters? Can we relax the assumption of CP conservation in decays?
- Yes, it is possible a Dalitz plot model independent approach. In this case no assumptions for CP conservation in the decay are necessary.

Model independent approach at $\Upsilon(4S)$

A. Bondar, A. Poluektov, "The Use of quantum-correlated D^0 decays for phi3 measurement," Eur. Phys. J. C55, 51-56 (2008). [arXiv:0801.0840 [hep-ex]].

A. Bondar, A. Poluektov, V. Vorobiev, "Charm mixing in the model-independent analysis of correlated $D^0 \overline{D}^0$ decays," Phys. Rev. **D82**, 034033 (2010). [arXiv:1004.2350 [hep-ph]].

- c_i, s_i from $\Psi(3770)$ timeintegrated data.
- No assumption of CP conservation in decay.

$$\begin{aligned} A_f &= |A_f| e^{i\delta_f} & \bar{A}_f = |\bar{A}_f| e^{i\bar{\delta}_f} \\ \int_i |A_f|^2 d\mathcal{P} &= T_i & \int_i |\bar{A}_f|^2 d\mathcal{P} = \bar{T}_i \\ \frac{\int_i \mathcal{R}e(A_f^* \bar{A}_f) d\mathcal{P}}{\sqrt{T_i \bar{T}_i}} &= \frac{\int_i |A_f| |\bar{A}_f| \cos(\bar{\delta}_f - \delta_f) d\mathcal{P}}{\sqrt{T_i \bar{T}_i}} = c_i \\ \frac{\int_i \mathcal{I}m(A_f^* \bar{A}_f) d\mathcal{P}}{\sqrt{T_i \bar{T}_i}} &= \frac{\int_i |A_f| |\bar{A}_f| \sin(\bar{\delta}_f - \delta_f) d\mathcal{P}}{\sqrt{T_i \bar{T}_i}} = s_i \end{aligned}$$

$$\frac{d\Gamma_i [D_{\text{phys}}^0 \to f]/dt}{e^{-\Gamma t} \mathcal{N}_f} = \left[\left(T_i + |\frac{q}{p}|^2 \bar{T}_i \right) \cosh(\Gamma y t) + \left(T_i - |\frac{q}{p}|^2 \bar{T}_i \right) \cos(\Gamma x t) \right. \\ \left. + 2 \left(c_i \sqrt{T_i \bar{T}_i} \left| \frac{q}{p} \right| \cos \phi - s_i \sqrt{T_i \bar{T}_i} \left| \frac{q}{p} \right| \sin \phi \right) \sinh(\Gamma y t) \right. \\ \left. - 2 \left(c_i \sqrt{T_i \bar{T}_i} \left| \frac{q}{p} \right| \sin \phi + s_i \sqrt{T_i \bar{T}_i} \left| \frac{q}{p} \right| \cos \phi \right) \sin(\Gamma x t) \right]$$

Model independent approach at $\psi(3770)$

- c_i , s_i from $\Psi(3770)$ data.
- No assumption of CP conservation in decay.

$$\begin{split} &\int_{i} \int_{j} |a_{+}|^{2} = \bar{T}_{1i} T_{2j} + T_{1i} \bar{T}_{2j} - 2\sqrt{T_{1i} \bar{T}_{1i} T_{2j} \bar{T}_{2j}} (c_{1i} c_{2j} + s_{1i} s_{2j}) \\ &\int_{i} \int_{j} |a_{-}|^{2} = \left| \frac{p}{q} \right|^{2} T_{1i} T_{2j} + \left| \frac{q}{p} \right|^{2} \bar{T}_{1i} \bar{T}_{2j} - 2\sqrt{T_{1i} \bar{T}_{1i} T_{2j} \bar{T}_{2j}} (\cos 2\phi \ (c_{1i} c_{2j} - s_{1i} s_{2j}) - \sin 2\phi \ (c_{1i} s_{2j} + s_{1i} c_{2j})) \\ &\int_{i} \int_{j} \mathcal{R}e(a_{+}^{*} a_{-}) = \left(\left| \frac{p}{q} \right| T_{2j} + \left| \frac{q}{p} \right| \bar{T}_{2j} \right) \sqrt{T_{1i} \bar{T}_{1i}} (\cos \phi \ c_{1i} + \sin \phi \ s_{1i}) - \left(\left| \frac{p}{q} \right| T_{1i} + \left| \frac{q}{p} \right| \bar{T}_{1i} \right) \sqrt{T_{2j} \bar{T}_{2j}} (\cos \phi \ c_{2j} + \sin \phi \ s_{2j}) \\ &\int_{i} \int_{j} \mathcal{I}m(a_{+}^{*} a_{-}) = \left(\left| \frac{p}{q} \right| T_{2j} + \left| \frac{q}{p} \right| \bar{T}_{2j} \right) \sqrt{T_{1i} \bar{T}_{1i}} (\cos \phi \ s_{1i} - \sin \phi \ c_{1i}) - \left(\left| \frac{p}{q} \right| T_{1i} + \left| \frac{q}{p} \right| \bar{T}_{1j} \right) \sqrt{T_{2j} \bar{T}_{2j}} (\cos \phi \ s_{2j} - \sin \phi \ c_{2j}); \end{split}$$

$$\frac{d\Gamma[V_{\text{phys}}(t_1, t_2) \to f_1 f_2]/dt}{e^{-\Gamma|\Delta t|} \mathcal{N}_{f_1 f_2}} = \left(|a_+|^2 + |a_-|^2\right) \cosh(y\Gamma\Delta t) + \left(|a_+|^2 - |a_-|^2\right) \cos(x\Gamma\Delta t) -2\mathcal{R}e((a_+^*a_-) \sinh(y\Gamma\Delta t) + 2\mathcal{I}m(a_+^*a_-) \sin(x\Gamma\Delta t))\right)$$