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General considerations 
 At (4S)
 Flavor tagged D0  through D*+→D0π+ decay. Flavor mistag  0.2% 
 We denote the D* flavor tag with label lX We denote the D  flavor tag with label lX
 D0 can be reconstructed in flavor lX, CP, K and multibody (e.g. Ks) final 

states. Relatively high purity due to m(D0) and Δm=m(D*+)-m(D0) 
 P ti l ti i b t (D0)/4 0 1 Proper time resolution is about τ(D0)/4 ≈ 0.1 ps

 At )
 Coherent D0D0 production CP K lX Ks

Double tags @ (3770)
Modes with D* tag @ (4S)

 Coherent D D production
 Both D mesons can be reconstructed

in lX, CP, K and Ks final states, 

CP K lX Ks
CP+ X X XX X
CP X XX X

with very low background
 Flavor mistag  0.2% with eX, 

but  2% with X (large  misid @ low p)

K X XX X
lX XX XX
K X

 ( g  @ p)
 Time-dependent measurements 

require larger CM boost compared to the (4S) case to achieve time resolution, but 
reconstruction efficiency decreases with large CM boost Need to determine the

Ks X

reconstruction efficiency decreases with large CM boost. Need to determine the 
optimal boost value.
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Time dependences
 We have derived the time-dependence for all combination of 

double tags

CP K lX Ks
CP+ X X XX XCP+ X X XX X
CP X XX X
K X XX XK X XX X
lX XX XX
Ks X

C l i Complete expressions
 Simplified expressions with CPT invariance, CP conserved in decay, and 

second order in x, y, y
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Example: flavor tagp g

At ): )

z = CPT violation parameter   p
q, p = indirect CP violation parameters

At ϒ(4S) using D*+ tagged events:
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Example: double K and lX tagsp g
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Example: K vs CP tagp g
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Example: Ks vs CP tagp g
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Example: double Ks tagp g
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FastSim studies: t reconstruction
 The flight lengths of the two Ds are reconstructed through a combined beam 

spot constrained vertex fit
 Proper times are computed from the flight lengths and the D momenta

D reco vertex

beam spot (z-x plane, not in scale)

D reco vertex
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FastSim studies: geo vs CM boost
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FastSim studies: t resolution

=0.90=0.30

RMS = 0.658 ps
Res  fnc  is unbiased

RMS = 0.310 ps
R  f  i bi dRes. fnc. is unbiased Res. fnc. is unbiased

=0.30 =0.90

<error> = 0.745 ps <error> = 0.217 ps
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FastSim studies: t resolution vs CM boost
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 For (3770) modes
Sensitivity studies: overview
 For (3770) modes
 Extrapolate CLEOc yields (includes cross-sections and selection efficiencies)
 Correct by SuperB geometrical efficiency vs CM boost
 Evaluate tripe Gaussian (TG) resolution function from FastSim vs CM boost

 For (4S) modes, extrapolate BaBar yields
 TG proper time resolution of 0 15 ps (0 1 ps core) TG proper time resolution of ~0.15 ps (0.1 ps core)

 Toy MC generator and fitter developed
 For now focus on 2-body decays

D bl   @ (3770)
 Strategy:
 Generate O(100) experiments for each double tag

f bi d fi f i bl f

Double tags @ (3770)
Modes with D* tag @ (4S)
used in this study

 Perform combined  UML fit of given ensemble of 
2-body double tags, fitting simultaneously for the 
mixing and CPV parameters:  x, y, arg(q/p), |q/p|

CP K lX
CP+ X X XX

g a d C V pa a ete s: , y, a g(q/p), |q/p|
 Generated values are current HFAG averages
 Assumed CP  conservation in decay

CP X XX
K X XX
l
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Sensitivity studies: expected # of events
IB (3770) HB (3770)LB (3770)

Favored # of events
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Suppressed # of events

(4S) (3770)



Sensitivity studies: Toy MC @ ) 
 LB ) , 

perfect  resolution, 
i

Arg(q/p)

Fit result
gen = 0 179 no mistaggen  0.179

 300 experiments 
generated

 10 less events (CPU (
memory limitation)

 24% converge with error 
matrix not definite Pull

Arg(q/p)
fit result - gen
error fit result



positive
 Understood due to the 

smallness of x,y while 
l fi i f A ( / )also fitting for Arg(q/p) 

and |q/p|. With mixing 10 
times larger all fits return 
correct error matrix
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Sensitivity studies: Toy MC @ ) 
 LB ) , 

perfect  resolution, 
i

x

Fit result
gen = 
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times larger all fits return 
correct error matrix
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Sensitivity studies: Toy MC @ (4S) 

Fit result
gen = 0 179

Arg(q/p)
 (4S) , perfect  

resolution, no 
igen  0.179 mistag

 300 experiments 
generated

 200 less events (CPU 

Pull

Arg(q/p)
fit result - gen
error fit result



(
memory limitation)

 29% converge with error 
matrix not definite 
positive

 Understood due to the 
smallness of x,y while 
l fi i f A ( / )also fitting for Arg(q/p) 

and |q/p|. With mixing 10 
times larger all fits return 
correct error matrix
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Sensitivity studies: Toy MC @ (4S) 
x

Fit result gen = 
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19

correct error matrix



Sensitivity studies: summary of results

Parameter Sensitivity @ (4S) with time Best sensitivity @ (3770) with time Sensitivity @ (4S) with time 
resolution, no mistag. 75 ab-1

Best sensitivity @ (3770) with time 
resolution (=0.56), no mistag. 0.5 ab-1

x 0.017% 0.11%

y 0.008% 0.05% Relative effect of flavor mistag
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y

Arg(q/p) 0.8 deg 4.8 deg

|q/p| 0.5% 3.7%

similar at (3770) and (4S)



Sensitivity: arg(q/p)y  g(q p)

Minimum

Efficiency corrected
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Sensitivity: |q/p|y |q p|

Efficiency corrected

 Minimum
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Sensitivity: xy

Efficiency correctedEfficiency corrected
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Sensitivity: yy y

Efficiency corrected
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Summary
 Flavor tag at D0-D0 threshold provides identical time-dependence than at (4S) 

using D* tagging, and less events, although in a different environment

 D0 D0 th h ld i  i  t  id  CP  K d K  t D0-D0 threshold is unique to provide CP,  K and Ks tags

 Variation of t resolution and geometrical acceptance vs CM boost evaluated

 Estimated the impact on physics with 2 body decays Estimated the impact on physics with 2-body decays
 Combined fit to all 2-body double-tags allows determination of  x, y, Arg(q/p), |q/p|

 Best sensitivity at ) for intermediate boost,   0.56y  ) 

Parameter Sensitivity @ (4S) with time 
resolution, no mistag. 75 ab-1

Best sensitivity @ (3770) with time 
resolution (=0.56), no mistag. 0.5 ab-1

x 0.017% 0.11%x 0.017% 0.11%

y 0.008% 0.05%

Arg(q/p) 0.8 deg 4.8 deg

|q/p| 0 5% 3 7%

Relative effect of flavor mistag
similar at (3770) and (4S)

 Sensitivity at (3770)  with 2-body decays 5 times worse than at (4S)

Mistag has to be understood very well  At (3770) critical good separation between 

|q/p| 0.5% 3.7%
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Mistag has to be understood very well. At (3770) critical good separation between 
pions and muons at low momentum
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Next steps
 Sensitivity studies on mixing and CPV parameters for 3-body 

d  i h  i d d  D li l  l i

p

decays with a time-dependent Dalitz plot analysis:
Dalitz plot model independent approach is to be pursued at SuperB. 

F  thi  it i  i l t  h   t  Ψ (3770) d tFor this, it is crucial to have access to Ψ (3770) data.

 Consider two different scenarios:
 Ti d d    Ψ(3770) Time-dependent measurements at Ψ(3770);
 Time-dependent measurements at ϒ(4S) with model 

independent coefficients (c  s ) obtained with time integrated independent coefficients (ci, si) obtained with time-integrated 
Psi(3770) data.

 Setting up simulation technology for 3-body Toy MC studies  Setting up simulation technology for 3 body Toy MC studies. 
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Time-dependent Dalitz plot analysesp p y
 Self-conjugate modes allow to extract mixing and CP violation 

parameters without D0-D0 relative phase ambiguity when assuming CP isparameters without D -D relative phase ambiguity when assuming CP is 
conserved in the decay.

 In SM we expect CPV in the D0 decay due to CPV in KS mixing at the 
l l f 3 10 3level of 3x10-3. 
 Is the above assumption still valid for the precision that we aim at SuperB? 

 Dalitz model uncertainty can be reduced using Psi(3770) data. Is it 
possible to perform a TDDP analysis in a model independent way for 
extracting mixing and CPV parameters?  Can we relax the assumption of 
CP conservation in decays?

 Yes, it is possible a Dalitz plot model independent approach. In this case 
no assumptions for CP conservation in the decay are necessaryno assumptions for CP conservation in the decay are necessary.
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Model independent approach at ϒ(4S)p pp ( )

 f Ψ(3770) i ci, si fromΨ(3770) time-
integrated data. 

N  i f CP  No assumption of CP 
conservation in decay. 

28



Model independent approach at ψ(3770)p pp ψ( )

 ci, si fromΨ(3770) data. 

 No assumption of CP 
conservation in decay. 
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