Comments on charge sharing with H-8500

J. Va'vra

SuperB collaboration meeting in London, 2011

Content

- What is our aim when thinking about the charge division ?
- Cross-talk vs. Charge sharing
- Charge sharing with MCP detectors. Tests with a computer and scope.
- Is H-8500 charge sharing the same as in MCP detectors, or is it much smaller ? We did not know the answer up to this point.
- Do we have any evidence from the test beam that the ADC pad treatment improves the Cherenkov angle resolution ?
- Test in the SLAC scanning setup with a scope.

Present FDIRC predicted performance

Doug Roberts, SuperB workshop, Annecy, 2010

Table 1: FDIRC performance simulation by Geant 4 MC.		
Design	Option	$\theta_{\rm e}$ resolution [mrad]
1	FDIRC with 3 mm x 12 mm pixels with a micro-wedge	8.1
2	FDIRC with 3 mm x 12 mm pixels & no micro-wedge	8.8
3	FDIRC with 6 mm x 12 mm pixels with a micro-wedge	9.0
4	FDIRC with 6 mm x 12 mm pixels & no micro-wedge	9.6

- The most conservative decision, which is a design #4, would give the same performance as the BaBar DIRC (~9.6 mrads for di-muons).
- However, one should point out that FDIRC will correct out the chromatic error by timing, which would reduce the error by 0.5-1 mrads.
- If we reduce the pixel size in y-direction by the charge sharing we gain. <u>The question is how much, and is the improvement worth the effort ?</u>

1-st FDIRC prototype in the ESA test beam

J. Benitez, D.W.G.S. Leith, G. Mazaheri, B.N. Ratcliff, J. Schwiening, J. Va'vra, L.L. Ruckman, G.S. Varner, NIM A 595 (2008) 104

H-9500 with 3 mm x 12 mm pixels:

Corrected for chromatic errors

- One can see that with the chromatic correction the performance with 3mm x 12mm pixels is superB.
- If we adopt H-9500 with 3mm x 12mm pixels, we would have 64 pixels/tube.

Optics in the SLAC scanning setup

J. Va'vra

The light entry into tube under study:

- Fiber ends with a lens, which produces a parallel beam. After a few mm of air gap, I placed another lens with very a short focal length (f = 15mm).
- The picture shows the H-8500.
- I am getting ahead of myself, but we have indications that a combination of two lenses produces a light scatter affecting tails.

Two devices to consider in this talk

Avalanche is large (a few mm).We can observe two pulses on neighboring pads, if laser points exactly to their boundary.

H-8500 tube electrode structure:

My guess: avalanche size near anodes is < 1mm

• I do not posses the detailed electrostatic design of these tubes, but all empirical studies point to the fact that the Burle MCP charge spread is significantly larger than that of the H-8500 tube.

Cross-talk in H-8500

J.Va'vra

Single photoelectron signal and its cross-talk to neighboring pad:

The single photoelectron is located in the center of a pixel.
HV: -1.0kV

- This is what I call a classical pixel-to-pixel electrical cross-talk.
- Its magnitude is about $\sim 3\%$ and it is a derivative of the primary signal.
- Its magnitude does not depends where in pixel you are, to my best knowledge. But, see the next slide....

Extremely detailed scans of H-8500

R. Montgomery, E.N. Cowie, M. Hoek, T. Keri, B. Seitz, Glasgow, U.K. - This is part of Panda R&D effort

- Is this an electrical cross-talk or an optical cross-talk caused by laser bouncing between photocathode and dynodes several times ? That is what I think this is. Debate is going between me and M. Hoek. They are looking into it.
- If this is the electrical cross-talk, its value has a very precise geometrical origin related to the dynode structure design. I do not believe it.

Charge sharing study with Burle MCP-PMT

Mathiew, a student working for us for 3 months, SLAC scanning setup, FDIRC effort

Require single ADC hit:

Require triple ADC hit:

Require double ADC hit:

Require quadruple ADC hit:

• The charge sharing clearly works for the MCP-PMT detector.

Charge sharing study with Burle MCP-PMT

Mathiew, a student working for us for 3 months, SLAC scanning setup, FDIRC effort

• The charge sharing can be used to interpolate over ±1.5mm from the pixel boundary in each direction.

Can one see it by the scope ? J.Va'vra

- Place a scope on a boundary of 4 pads and see clearly four single pe pulses at the same time. By moving the laser position in small steps, one can make appropriate pulses to disappear.
- One can get clearly convinced by the scope that the charge division must work <u>with the MCP detector</u>.

Early scans at SLAC

SLAC scanning setup, FDIRC effort

Burle MCP:

H-8500:

- Burle MCP has clearly larger tails.
- H-8500 tube has, however, tails also.
- <u>This tail motivated me to believe that we should try to do charge</u> sharing with H-8500. On the basis of this plot I asked French engineers to add an ADC into the electronics readout.
- However, in retrospect I believe the H-8500 tail on this plot is due to large extent the light scatter in the lens optics.

H-8500: Do I see the charge sharing with a scope ?

J.Va'vra, new SLAC scanning setup, new H-8500 tube

Maximum charge sharing position

Laser on pad boundary:

Single photoelectron pulses and corresponding cross-talk:

- Set the probability of a hit to <<1%.
- Move the laser position in 200 micron steps, and search for a clear sign of charge sharing, which is to observe pulses on both pixels with two equal amplitudes. And then slowly explore the the charge sharing range.
- Instead, I always see a signal either on one pad or the other one.
- I conclude that if there is a charge sharing region, it is very small.

What is the explanation **?:** Electrode structure of MaPMTs

Hamamatsu Multi-anode PMTs:

• Notice a little entrance electrode around each pad boundary. In my opinion, this deflects photoelectrons away from the pad boundary, which reduces the charge sharing.

Collection Efficiency is improved.

The 1-st FDIRC prototype in the ESA test beam

J. Va'vra

A simple ADC analysis:

If pads i&k are neighbors: if $(ADC_i > 5 \&\& ADC_k > 5)$: => $\theta_c = [\theta_c(i) + \theta_c(k)]/2$

A simple cross-talk cut:

If pads i&k are neighbors: if (TDC_i > TDC_k && diff_TDC < 1ns): => kill a pad with TDC_k

- Slot 3 with smaller pads has the best resolution due to ~3 mm pad sizes
- Add ADCs on larger size ~6mm pads in slots 2, 4 and 5 to achieve the same
- Slot 7 will have a new Univ. of Hawaii electronics (measures a pulse shape)
- The resolution with 3mm x 12mm pixels using H-9500 was clearly the best.
- The aim of this analysis was to see if a simple charge sharing would improve the Cherenkov angle resolution even for 6mm pixels.

The 1-st FDIRC prototype in the ESA test beam

J. Va'vra

0

Chromatic empirical correction on: Use TDC only treatment: Add an ADC information in slots 2.4.5: All slots & pads, 2-nd peak: chromatic corr. on (empirical) All slots & pads, 2-nd peak: chromatic corr. on (empirical) y2 / ndf 262 1/39 4017/39 14000 14000 Narrow Norm 1.221e+04 ± 58 Narrow Norm 1.225e+04 ± 57 Narrow Mean 821.5 ± 0.0 Narrow Mean 8219+00 12000 Narrow Sigma 7.464 ± 0.032 12000 Narrow Sigma 7.526 ± 0.032 Wide Norm Wide Norm 1882 ± 18.0 1776 ± 17.6 Wide Mean 820.1+0.1 10000 Wide Mean 8203+01 10000 8000 8000 $\sigma \sim 7.53$ mrads $\sigma \sim 7.46$ mrads 6000 6000 S/N~14.5% S/N~15.4% 4000 4000 2000 2000 740 760 780 800 820 840 860 880 900 920 940 0 740 760 780 800 820 840 860 880 900 920 940 Cherenkov angle (mrad) Cherenkov angle (mrad) - Adding ADCs to pad interpolation has practically no effect on the final result. Chromatic empirical correction on: Use TDC & ADC pad sharing treatment: All slots & pads, 2-nd peak: chromatic corr. on (empirical) All slots & pads, 2-nd peak: chromatic corr. on (empirical) 4017/39 14000 / ndi 628.2 / 39 Narrow Norm 1.225e+04 ± 57 Narrow Norm 1.274e+04 ± 59 14000 821.9±0.0 Narrow Mean Narrow Mean 822.1±0.0 Narrow Sigma 7.773±0.034 12000 Narrow Sigma 7.526 ± 0.032 12000 Wide Norm 1776 ± 17.6 $\begin{array}{c} 2065 \pm 19.6 \\ 820.9 \pm 0.1 \end{array}$ Wide Norm Wide Mean 8203+01 10000 Wide Mean 10000 8000 8000 $\sigma \sim 7.77$ mrads 6000 $\sigma \sim 7.53$ mrads 6000 S/N~14.5% 4000

2000

- Actually it is now slightly worse.

 \mathbf{O} The same, but remove the cross-talk treatment: S/N~16% 4000 • 2000 740 760 780 800 820 840 860 880 900 920 940 740 760 780 800 820 840 860 880 900 920 940 Cherenkov angle (mrad) Cherenkov angle (mrad) - So, leave active: (a) the cross-talk treatment, (b) TDC & ADC treatment of pad interpolation.

The overall effect of the ADC treatment of the pad charge sharing is small.

If anything, then the cross-talk treatment helps a bit.

Unfortunately, this is for all tubes involved, i.e., I did not do this analysis for a specific device (we had one H-8500 and two **Burle MCPs).**

I have also contacted Joe Schwiening and Jose Benitez. Unfortunately, they did not do this particular analysis at that time.

Conclusion

- After a lot of confusion on my part, I concluded that the H-8500 pixel interpolation using the charge sharing will not work. This is because of (a) small avalanche size in H-8500 and (b) the electrode design of H-8500.
- If we insist on better Cherenkov resolution, we sould switch to H-9500 tube, and use 3mm x 12 mm pixels. This was tried on the 1-st FDIRC prototype in the test beam and it worked very well.
- Doug was hinting this result in his 1-st scanning analysis.
- I contacted Hamamatsu about all this: no answer so far.