

First Results from Radiation Tolerance Tests on Xilinx Virtex 5

A. Aloisio¹, V. Bocci², <u>R. Giordano¹</u>

 Physics Dept. - University of Napoli "Federico II" and INFN Sezione di Napoli, Italy
 INFN Sezione di Roma 1, Rome, Italy

email: aloisio@na.infn.it, bocci@roma1.infn.it, rgiordano@na.infn.it

Outline

- FPGAs on-detector?
- Benefits of homogeneous FPGA<->FPGA links
- Xilinx Virtex-5 LXT50T facts
- Test bench architecture
- Test facility and conditions
- Results
- Conclusions

Can We Use FPGAs On-Detector ?

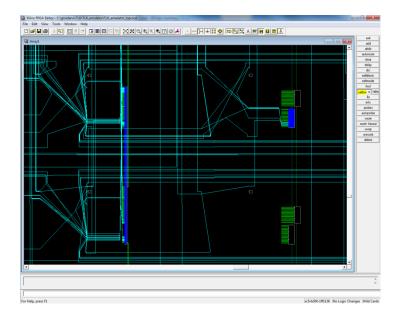
- S-RAM FPGAs traditionally excluded from radiation areas
 - Configuration (stored in static RAM) is sensitive to single event upsets (SEUs) => bit-flips
 - A bit flip in the configuration memory can change design functionality
- Mid-range Xilinx FPGAs include tools for configuration error detection and correction

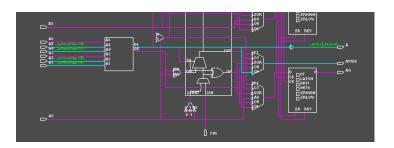
What if FPGAs Could be Used

- The fast link sub-system will be dramatically simplified: we would only have symmetrical links! (FPGA<->FPGA)
- No constraints imposed by line encodings of stand-alone SerDeses (i.e. start/stop bits of DS92LV18 and 8b10b coding TLK2711-A)
- Just one type of links, protocol and line coding customized to ETD requirements
- Fixed-latency proof and thoroughly tested
- Artix-7: cheap Xilinx FPGAs (~ 40\$) with ~ 8 embedded SerDeses (GTPs)
 - More than one link per chip
 - Data-rates up to 3 Gbps on all links (including FCTS)
 - a (actually SerDes could go even faster : 6.6 Gbps)
 - □ # of links could be halved or better (when not driven by topology)

Device

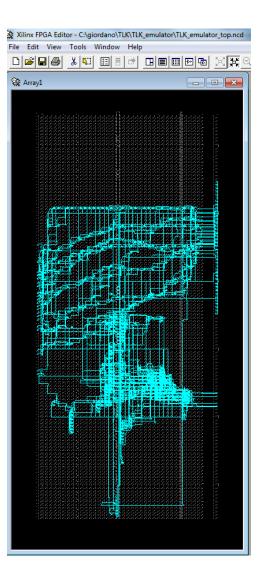
- Xilinx Virtex 5 LX50T
 - Includes high-speed SerDeses
 - Mid-range size, yet large enough to fit our needs
 - Tested by Xilinx, NASA, Lawrence Berkeley Lab. and Los Alamos Lab.
 - Embeds configuration CRC with ECC blocks and partial reconfiguration capabilities
 - Two versions: rad-hard (70k\$) and industrial (400\$) (we focus on the latter, guess why)





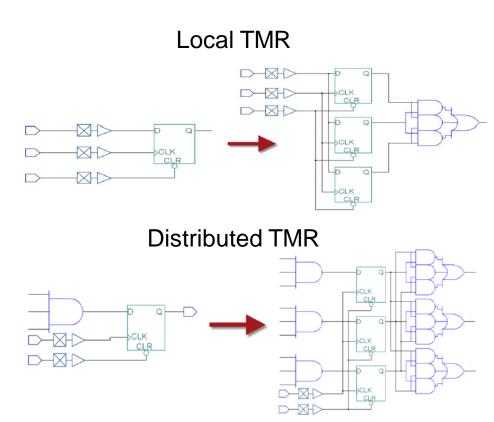
Device Facts

- Configuration size 11.37
 Mbits
 - CLBs&routing ~ 9 Mbit
 IOB, DSP, BRAMinterconnect ~ 2.37 Mbit
- Clock cycles per CRC Readback 355,190
- Readback time 7.1 ms (at 50 MHz)



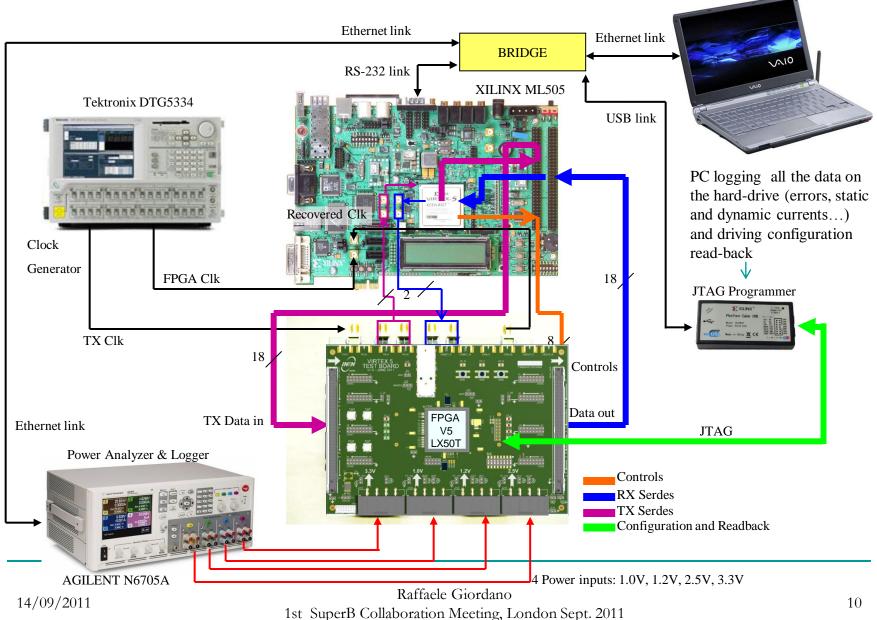
Benchmark Design

- Serial Link running at 2 Gbps (compatible with the TLK2711-A)
 - 16-bit parallel words (18-bit including control bits)
 - 100 MHz parallel clock
 - a 8b10b encoding
 - Explicit lock flag
- Dummy Logic on Tx and Rx parallel data-path to observe realistic SEU effects
 - 2x 16 levels of 18-bit registers and combinational logic
- Implemented with Precision Hi-Rel synthesizer
 - Two firmware versions: one with and one without Triple Module Redundancy moderation techniques
- Resource Occupation
 - GTPs : 1 (10%)
 - □ Slices: 376 (5%)
 - FFs: 926 (3%)
 - LUTs: 980 (3%)
 - BRAM: 1 (1%)


- □ PLLs: 1 (16%)
- Clock Buffers: 6 (18%)
- □ IOBs: 47 (10%)

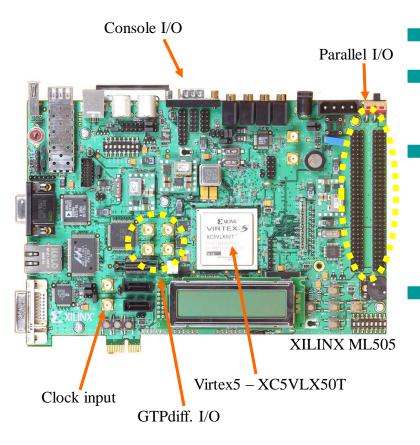
Mentor Precision Hi-Rel Synthesizer


- Aimed at applications in aerospace, medical, highreliability and safety-critical FPGAs
- Several grades/options for Triple Module Redundancy
 - Local TMR, registers are tripled and voted are inserted
 - Distributed TMR, registers, combinatorial logic and even voters are tripled
 - Global TMR, for highest reliability, see next slide
- Can use power posts of V5 instead of half-latches as a source for logic constants (logic '0' and '1')



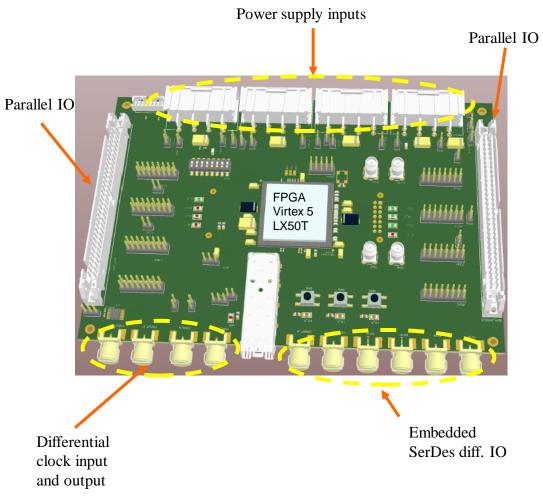
Global Triple Module Redundancy

- We adopted the GTMR option (recommended for S-RAM FPGAs)
 - Combinatorial elements, registers and the pertaining clock routes are tripled and voted out
 - But, in our design, IOs have not been tripled, unfeasible
 - Embedded SerDes (GTP) & PLL not tripled
 - GTP replication would have required Serial IO triplication, unpractical
 - PLL triplication not supported by the tool
- We also used V5 dedicated powerposts



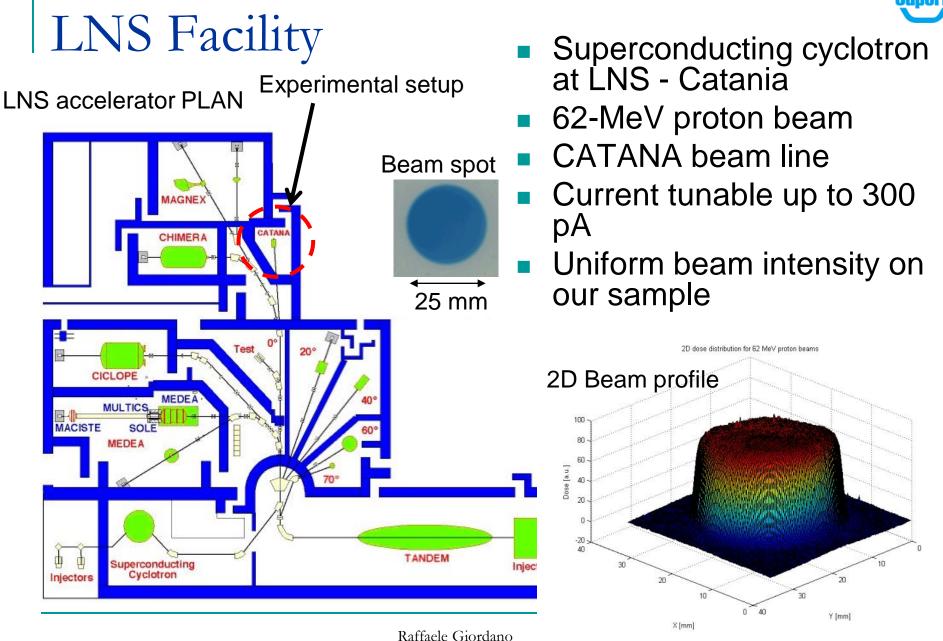
V5LX50T Test Bench

Tester Board



Same FPGA as DUT board Data pattern stored in the FPGA firmware

- TX and RX sections of the benchmark link design are tested independently and simultaneuosly
- Console IO
 - Status and errors are logged on a console handle by an embedded microprocessor



FPGA Board for Beam Test

- Compatible with the Xilinx ML505 board used for the presented lab. tests (implements sub-set of features)
- Same firmware used in ML505 for SEU emulation tests (only synthesizer changed)
- SMAs for clocking and serial IO
- No active components
- 4-wires connectors for current sensing power supply
- SFP cage for optional testing of opto-electronics

1st SuperB Collaboration Meeting, London Sept. 2011

Test-setup

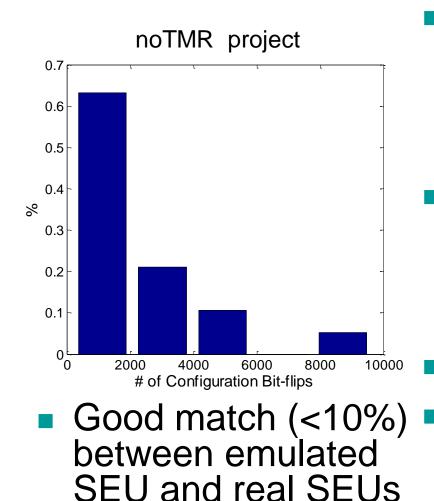
Beam

spot

FPGA

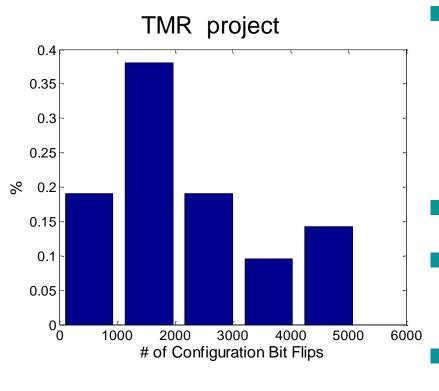
Test board

Wider Back view


Parallel & Serial Data cables

Tester board

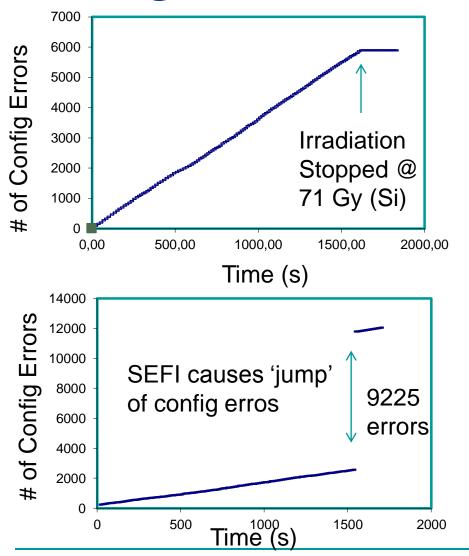
- Test conditions
 - All Vcc set to maximum allowed value (1.05V, 1.32V, 2.63V, 3.45V)
 - $f_{clock} = 100 \text{ MHz}$
 - Data rate during test=2 Gb/s
 - Configuration cross section measurement and link failure test
 - Tests split into many runs (~ 50)
 - Configuration x-section, 6 runs, several dose rates from 1 to 20 Gy/min (Si)
 - Tested 2 link firmwares: w/ TMR and w/out TMR (will refer to them as TMR and noTMR), with different dose rates also


NoTMR Firmware: SEU Tolerance

Total of 19 runs 18 runs @ 6 Gy/min (Si) 1 @ 23 Gy/min (Si) Avg. duration 146 s => total dose per run 14 Gy (Si) We measured # of configuration bit-flips accumulated before link failure (error burst) (N_{flips}) On average N_{flips} =2070 During the SEU emulation tests performed in lab. in May, N_{flips}=2250

TMR Firmware: SEU Tolerance

- Total of 24 runs
 - □ 20 runs @ 6 Gy/min (Si)
 - 4 @ at 23 Gy/min
 - Avg. duration 171 s => total dose per run 19 Gy (Si)
- On average N_{flips} =2170
 - Results compatible with the noTMR firmware
 - Looks like TMR did not improve SEU-tolerance
 - due to non-tripled modules? (GTP, PLL?)

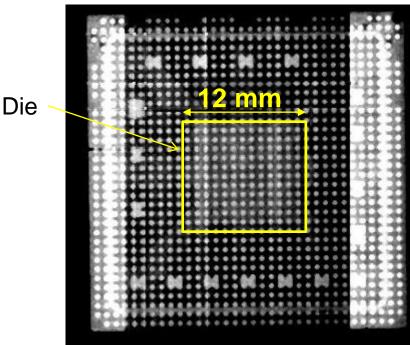


Configuration Memory Test Methodology

- 1. Start a new run
- 2. Program the FPGA
- 3. Read-back the configuration via JTAG and compare it to the initial one
- 4. Log number of differences (errored bits)
- 5. Go back to 3, until total desired dose reached
- The test loop (pts 3,4,5) has been executed at the maximum speed permitted by JTAG, i.e. one readback every 15 seconds

Configuration Memory Error Results

- Accumulation of bitflips into configuration memory, FPGA working like a «dosimeter»
- Experienced a few SEFIs, a SEU causes failure of readback circuitry => 1 SEU generates many (thousands) configuration errors
- Abrupt jumps of config errors


Raffaele Giordano 1st SuperB Collaboration Meeting, London Sept. 2011

Configuration Bit-flip Cross-section

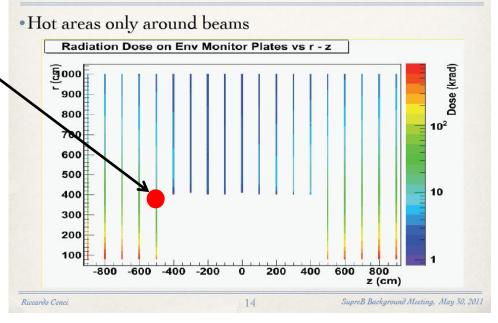
- V5LX50T device
 - Die size = 1.4 cm^2
 - □ p @ 62MeV
 - Measured
 - $\sigma = 3,5.10^{-14} \text{ cm}^2/\text{bit}$
 - Published
 - $\sigma = 6.4 \cdot 10^{-14} \text{ cm}^2/\text{bit}$, see [1]
- Good agreement between measured and published σ (different device, facility, test conditions...)

X-ray image Package

Reference:

[1] Quinn et al., Proceedings of 2007 IEEE Radiation Effetcs Data Workshop, Page(s): 177-184

Link Failure Rates


- Effective x-section to failure is designdependent (critical bits)
- 0.5 kGy(Si)/year (a) => 4.1.10⁴ configuration bitflips on our design /year (measured)
- # of link failures/year = 20 (on average, without ANY recovery strategy)
- Expected one link failure every 18 days (includes both configuration and SEUs in configured logic)

Note:

(a) Estimated by R. Cenci, INFN Pisa

Courtesy of Riccardo Cenci, Elba Meeting, May-Jun. 2011

ETD: radiation dose in the hall

Conclusions

- Very good agreement (within 10%) between test with emulated SEUs and test on beam
- On average ~ 2100 bit-flips needed to have a link failure
- Measured configuration error x-section in agreement with the expected one (within factor 2)
- Test beam data analysis to be completed:
 - Analysis of currents
 - More detailed analysis of link failures, how did it fail?
 - Investigate causes of failures, why did it fail ?
 - Why did the TMR and noTMR designs perform the same?
- Need further testing and updated info on expected radiation in detector area as soon as possible
- Next proton test beam (@LNS, 62-MeV protons) scheduled for Dec. 10th 2011
 - Will test Xilinx Virtex-5 and Virtex-6 FPGA families
- Still unclear if FPGAs are suitable to be used on-detector
- We thank all the LNS staff for the their help and support during the beam test

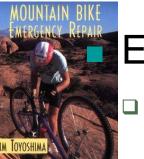
Back-up Slides

Quick Facts

•
$$\rho_{Si} = 2.3 \text{ g/cm}^3$$

(dE/dx)_{p@60MeV} in Si = 1.8 MeV/mm (or 600 keV in 300 μm)

•
$$\sigma = (1 / F) * n_{errors}$$


Single Event Functional Interrupts

- Experienced a few BRAM SEFIs
- Run 30 This is a known SEFI we call "BRAM SEFI" where the configuration bits (one) get flipped, and the entire BRAM gets its data inverted.
- Another BRAM SEFI is a replacement of a column with the spare column (256 bits in error).


Recovery Strategies

- Scheduled maintenance
 - Reconfigure the FPGA at regular

intervals, e.g. once a day, no matter what

- Emergency maintenance
- Reconfigure as soon as the service can be interrupted, e.g. exploit any reset or power-cycle of the link to reconfigure

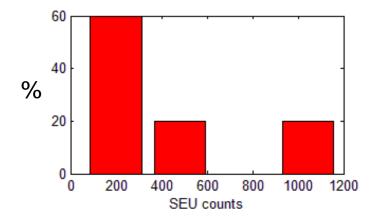
- Repair-while-running
 - Partial reconfigure as soon as the error is detected, even if the link is working => interruption of service, i.e. dead time

Raffaele Giordano 1st SuperB Collaboration Meeting, London Sept. 2011

Emulating Configuration SEUs

- Investigate impact of configuration SEUs on design functionality
 - Flip configuration bits by means of internal configuration access port (ICAP)
 - Optional error correction thank to integrated CRC calculator and ECC (FRAME_ECC)
- Programmable integrated controller:
 - SEU generation without correction (error accumulation)
 - SEU generation and on-the-fly correction
- Custom design derivative of a Xilinx core (so called SEU Controller)
 Raffacte Giordano

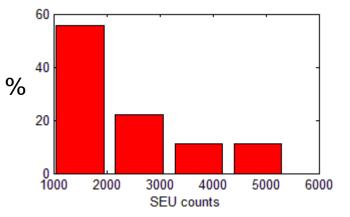
Need to Estimate Rad-Tolerance


- Two kind of issues :
 - Total Ionizing Dose (common to all ICs)
 - Logic errors

errors

- SEUs
- Lab test (SEU Injector) Configuration
- Beam test However, configuration SEUs have been largely over-estimated in the past: they rarely impact the design functionality
- In this talk we will not cover logic errors, they are common to every digital device

SEU Generation&Correction Results


- SEUs generated at 1 Hz (due to limitations of the original Xilinx SEU controller)
- Measured # of (generated&corrected) SEUs before failure
- On average ~ 400 SEUs needed to observe BERT errors
- Very likely the difference is due to reconfiguration=>even correctly working blocks are affected

SEU Accumulation Test Results

- SEU generated at 20 Hz
- We measured # of SEUs before failure
- On average 2250 SEUs needed to observe BERT errors

