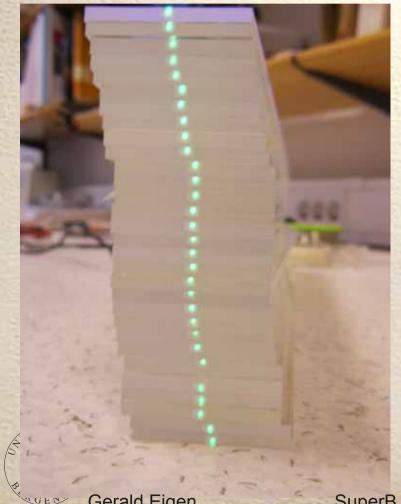


Introduction

- The backward endcap EMC prototype consists of 24-layers of Pb plates and scintillator strips
 → full depth is 12 X₀
- Pb plates are 2.8 mm thick ring segments
- Scintillator strips are 3 mm thick left-handed spirals, right-handed spirals radial segments that alternate eight times
- 6 strips per layer will be read out strip sizes vary from 4.1 cm at the inner rim to 9.8 cm at the outer rim
 total of 144 readout channels
- Each scintillator strip is read out with a Y11 WLS fiber positioned in a groove in the center of the strip and coupled to an MPPC at the outer rim


erald Fige

Status of Prototype Preparations

32 out of 48 sector strips have been completed in our workshop with the old milling machine

- The remaining 16 strip have been cut sides need to be polished, grooves need to be cut
- All sector strips were supposed to be finished by end of July
- This will take several weeks

Status of Prototype Preparations

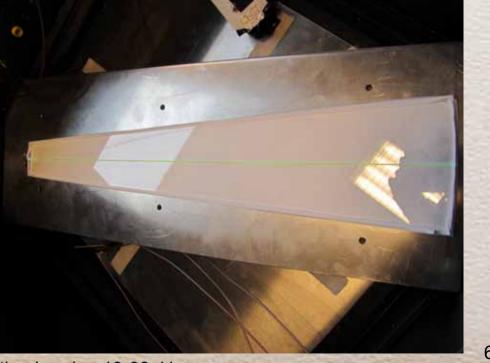
- Yesterday, I spoke with Felix Sefkow about help with the production of the 96 spiral strips
 - → he told me that the DESY plastic laboratory is working and that their engineer is looking for tasks to keep his lab busy
 - → send drawings & details of the job to Felix after the meeting
 - → for ~2 hours per strip this job should take about 5 weeks
- I will also ask the Felix to produce the 48 plastic pieces needed to hold the strips at a fixed position in each layer
- After our workshop has finished the remaining sector strips, I will ask the to machine the parts for the mechanical support structure
- In ~2 weeks I will order the missing components (have 70k NOK left)
 - 3 mm thick plastic filler material
 - 30m Y11 fiber (need help from collaborators)
 - Tyvek sheets and white reflector paint
 - Temperature sensors

Gerald Fige

Manpower Issues

- A Chinese master student, Zhou Zhuo, started middle of August
- My student Justas needs to focus on ATLAS analysis, but he promises to help Zhou with electronics issues and will participate in the test beam
- The other 3 master students have not decided yet
- Though I have 65k€ from the EU project AIDA for hiring a postdoc, the department is causing problems, since we are in a transition period to a new 4+4 year contract with NFR (application deadline is Oct 16th, approval in December)
 - → I am hoping to send out an add for a 3-year postdoc position soon (without a guarantee of money from NFR they are hesitant)
 - ➔ If the add is placed before October I still won't get anyone before December/January
- Though DESY will help with producing the strips they probably will not join SuperB, since they have involvements in Belle II
 I will see Joachim Mnich early October (ECFA meeting) & discuss this

Hire technical PhD student jointly with CERN (Justas is candidate) 5 Gerald Eigen SuperB meeting London 13-09-11


Test Station

We have a test station that allows us to quickly

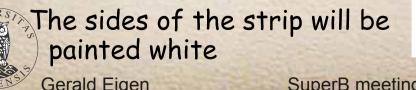
- measure the light yield in MIPS,
- determine the non-linearity curve of the photodetector
- measure the non-uniformity of the strips
- test black dot patterns to make strips uniform
- We couple the MPPC directly to a custom-made preamp at the outer edge of the strip
- Signal is sent to a 14 bit
 ADC housed in a VMS crate
- Data taking and processing is done with Labview
- One of Zhou's first task is to learn doing these measurements

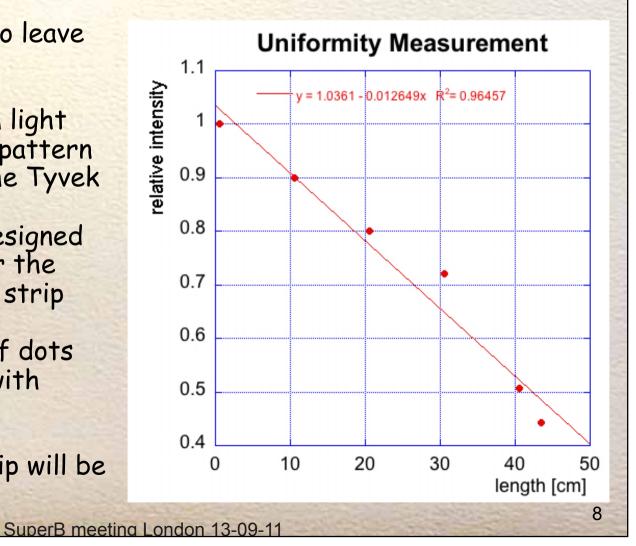
Gerald Figen

SuperB meeting London 13-09-1

Preamplifier Design

- To avoid pickup noise it is useful to place a preamplifier directly onto the MPPC
- The amplified signal will be sent to the SPIROC chip
- We have a laboratory and the tools to quickly produce preamplifiers
 This will be one of the first tasks for Zhou, who needs to learn basic electronics and how to solder
- The present layout, however, is too bulky to place onto the prototype layers
- Since the fibers in three alternating strips reach the outer edge in different places, we have space of 9 cm in φ and 1.71 cm in z
 J dimensions of 1.2 cm × 2.5 cm should be suitable
 - Once a mask is designed it is very fast to produce boards and solder components


Gerald Figen



Non-Uniformity Corrections

- The non-uniformity of the sector strips is consistent with the ratio of the inner side to outer side (0.41)
- This is far too large to leave uncorrected
- To produce a uniform light response, we print a pattern of black dots onto the Tyvek
- The dot pattern is designed using a simulation for the light response in the strip
- Expect the number of dots to increase linearly with radius

Conclusions

- 32 radial sector strips are completed, 16 remaining sector strips are cut out
- DESY will help out with production of logarithmic spiral strips, since strip production is still the bottleneck
- Ask DESY to cut also the 48 plastic positioning pieces
- The manpower situation is improving slowly
 - one new master student, maybe more
 - postdoc student hiring is delayed due to funding situation
 - plan to hire a technical PhD student jointly with CERN
 - Urgently need new collaborators

erald Figer

Immediate Next Steps

- Mount MPPCs and test performance of the sector strips
- Measure absolute light yield with trigger counter underneath the strip
- Build 144 custom-made preamplifiers
- Design pattern of black dots to compensate for non-uniformity
- Need to investigate backgrounds to decide if strips need to be split into 2 pieces to deal with occupancy due to backgrounds
- Measure properties of 2 strip segments connected via one Y11 fiber
- Measure non-linear response of MPPC in strip arrangement

erald Figer