DCH Sumary

1st SuperB Meeting – London, 15 September 2011

G. Finocchiaro – M. Roney

- Full-length prototype to:
 - study cluster counting under realistic conditions (discrete-cathode cells, L=2.5m)
 - serve as a test bench for the final FEE
 - test implementation of 1st level DCH trigger Track Segment Finding
 - Read-out boards provide independent analog output for the trigger system
- 28 square cells (1.4cm side, Rfs=3:1), on 8 staggered layers (3-4-3-4-3-4 cells)

Proto2 - sample waveforms

90%He-10%iC₄H₁₀ HV=1775V Run "A"

"#1 cells"

Sample waveforms – noise level

90%He-10%iC₄H₁₀ HV=1775V Run "A"

"#1 cells"

Total amplitude

First data are being analysed

Noise level: clusters found when track |DOCA| > 3cm

5

0

5

Proto2: Summary

- The commissioning of Prototype 2 is still ongoing
- Encouraging results from first data
 - e.g., noise level not as high as one could fear because of the full scale detector size (2.5m long wires, discrete cathode structure, 28 channels...), and faster preamps
 - behavior consistent with the 17-mm square tube
- Intense work next weeks in preparation for scheduled beam test at BTF
- Financial request submitted to run a beam test in 2012
 - still to decide where PSI/CERN/TRIUMF/FNAL

TRIUMF test beam

Single-cell 2.7m long test tube to:

- Study the performance of Jean-Pierre's preamp prototype in a realistic beam environment with a full-length detector.
- Can we achieve the signal-to-noise and bandwidth performance required for cluster counting?
- Compare the ability to distinguish $e/\mu/\pi$ as a function of momentum using cluster counting and dE/dx.

TRIUMF test beam

Tube has been strung

Preparation for exposing to M11 beam at TRIUMF is ongoing

- 62 400 MeV/c; e⁺, μ^+ , π^+ . Significant proton contamination above 300 MeV/c.
 - can also be operated in negative mode at lower rate
- 4 ns bunch every 44 ns
- Expect dozens of particles per second.
- Particle ID (discussed later) but no beam line tracking.

TRIUMF test beam

8000

6000

4000 -

2000 -

0 -

10

15

20 25 time (nanoseconds)

Beam line particle identification

 Primary method to identify 4000 beam particles is time of flight. 3000.

Plots are for L = 4.43 m; only [§]₂₀₀₀
 3.8m is now available.

160 MeV/c

30

35

Run plan

- Or rather, ideas towards a run plan:
 - 5 momenta
 - 5 locations along the wire
 - 2 gases
 - 3 HV
 - 5 dip angles

J.F. Caron

PID gain from cluster counting in SuperB

- Use an existing analysis with heavy dependence on PID
 - $B \to K \nu \bar{\nu}$ with semileptonic recoil

dedx par3="-0.34" />

 Parameterize effect of cluster counting on the PID, without worrying about details (for now)

In FastSim, dE/dx measurement for each DCH hit is drawn from a normal distribution with mean given by the Bethe formula.

$$\mu = \begin{bmatrix} \frac{dE}{dx} \end{bmatrix} \qquad \sigma = \frac{p_1}{1.622 \times 10^{-3}} \begin{bmatrix} \frac{dE}{dx} \end{bmatrix}^{p_2} L^{p_3}$$
PacTrk/Dch_SuperB_Measures.xml:

HitType="3"
trunc_frac="0.7" \leftarrow Fraction kept for truncated mean, but not actually necessary
dedx_par1="0.00154" $\xrightarrow{p_1}{p_2}$ Play with these numbers

 p_3

PID gain from cluster counting in SuperB

BaBar-like option

- DCH number of sense wires (guess): 9216
- Number of channels per board (guess): 48
- Power requirement/board : ≈ 30 35 W

Off-Detector boards: 192 VME crates (16 boards/crates): 12 Power Requirements: ≈ 6 - 7 kW

Cluster Counting option

DCH number of sense wires (guess): 9216
Number of channels per board (guess): 8
Power requirement/board : ≈ 40 W

Off-Detector boards: 1152 VME crates (16 boards/crates): 72 Power Requirements: ≈ 46 kW

OFF-DETECTOR ELECTRONICS

Both boards/crates and total power requirements differs greatly for BaBar-like and Cluster Counting electronics (192/12/6 BaBar-like and 1152/72/46 Cluster Counting).

Cluster Counting FE remark: probably within a couple of years it will be possible to pack 16 - 1 GS/s digitizer, feature extraction logic and buffers in a single VME board, but at the present time the state of art are 8 - 1 GS/s channels in a (standard) VME board.

BaBar-like FE remark: 48 channels in a VME board is a (very) prudent estimation. A real one could be 64 (using micro coax or twisted pairs signal cables). In such a way the boards/ crates counts would decrease to 144/9.

J.P. Martin, P.Taras

- Preliminary discrete-components preamp design with
 - input impedance adapting stage
 - high BW amplifier stage

CONCLUSIONS

Output noise of circuit, for 1m posi Input referred noise with a	ition :	43 μ V in 50 ohms load
50 ohms post amplifi	er :	90 μV
Output amplitude, 10 fc 1ns pulse	:	950 μV
S/N Ratio	:	10.5
S/N Ratio without matching to 50 ohms amplifier: 0.001m 1.0m 2.7m	:	5.6 4.0 0.95

= → Ratio of signal amplitude/RMS noise can be improved by a factor 2.5

Mechanical structure

- Preliminary studies on the SuperB DCH Mechanical Structure
- Specifications:
 - total load on endplates ~2ton
 - "Tolerable" endplate deformations (to be defined)
 - Possibly non-load-bearing inner cylinder
 - less material
 - Stringing operations

Dimensions

Max. diameter of DCH (mm)	1600
Min. diameter of DCH (mm)	472
Total max length (mm)	2760
Radius of endplate (mm)	2208
DCH Summary	15

Two load configurations

• On inner cylinder

- On outer cylinder
 - e.g. with struts as in KLOE

- Shaped endplates result in much smaller deformations for fixed thickness
 - e.g. for given load and thickness almost 2 orders of magnitude smaller than flat plates
- Convex spherical endplates used in the following

Preliminary FEM analysis

- Intermediate modulus isotropic CF laminate chosen to have ad idea of the material properties
- Total load, due to wires, is 30kN ≈ 3ton
- Plates thickness: 8mm

Ply#	Lamina Type	Thickness(m)	Angle (deg)
1	Graphite/Epoxy	1,27 E-04	0
2	Graphite/Epoxy	1,27 E-04	90
3	Graphite/Epoxy	1,27 E-04	45
4	Graphite/Epoxy	1,27 E-04	-45
5	Graphite/Epoxy	1,27 E-04	-45
6	Graphite/Epoxy	1,27 E-04	45
7	Graphite/Epoxy	1,27 E-04	90
8	Graphite/Epoxy	1,27 E-04	0

Properties	
Ex(MPa)	56300
Ey(MPa)	56300
Nuyx	0,2962
Nuxy	0,2962
Gxy (MPa)	21820

Deformations

STEP=1 SUB =1 NME=1 NK (AVG) SYS=0 MK =.227737 MK =.225605

Endplates supported on:

Outer radius

Axial displacement

inner radius

Axial Displacement

outer radius

Axial Displacement

inner radius

Axial Displacement

Radial displacement: Allowed

allowed

0.22mm

ed

SEP 12 13:1 FLOT NO.

Maximum z diplacement

2.2mm

15 September 2011

DCH Summary

0.57mm

Summary and outlook

- Convex endplate configuration strongly reduce the axial displacement in comparison with flat plate
 - more shapes will be studied to optimize deformations and stability
- Using only one load bearing structure (struts or inner/outer cylinder) is feasible
 - ongoing discussion on best option, including stringing fixtures

- Optimization of CF laminate (higher modululs, sandwich structure, different fiber orientation)
- Effect of the feed-through holes
 - will require tests on drilled samples
- Improve endplate geometry to realistically model the fixed edge conditions
- Improve FEM model to take into account the orthotropic material and understand the behaviour on the CF plies
- Deformation and stability (buckling) analysis to be performed simultaneously on all structure elements (cylinders, endplates (struts))