

Polish Infrastructure for Supporting Computational Science in the European Research Space

PL-Grid: Modern Computing Infrastructure in European Research Space

Jacek Kitowski and Łukasz Dutka

ACC Cyfronet AGH, Krakow, Poland

www.plgrid.pl/en

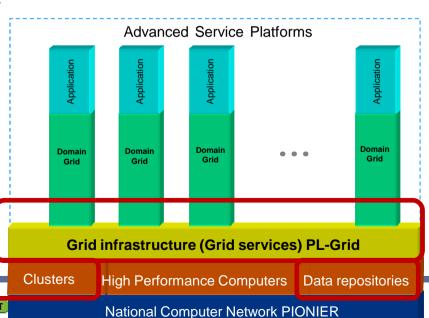
Outline

- ◆ PL-Grid Reminder
 - Motivation, consortium and objectives
 - PL-Grid and EGI
 - Organization of the project
- Current Status and Advancements
 - Status of hardware infrastructure
 - Operational Centre tasks and services
 - e-Infrastructure software, software packages and user's tools
 - Training and user support
 - Security aspects
- Conclusions Future work

PL-Grid Reminder

- January 2007 Consortium Creation
- ♦ Consortium members 5 Polish Centres
- March 2009 PL-Grid Project proposal got funded by the European Regional Development Fund as part of the Innovative Economy Program

March 2010 – First working NGI in Europe in the framework of EGI.eu Project website: www.plgrid.pl/en


- Common (compatible) base infrastructure
- Capacity to construct specialized, <u>domain Grid</u> <u>systems</u> for specific applications
- Efficient use of available financial resources
- Focus on <u>HPC and Scalability Computing</u> for domain specific Grids

Offer for the Users

- Computing <u>Power</u> 215 Tflops
- Storage 2500 TBytes
- Support from PL-Grid staff hardware, software, services

Current Status and Advancements Hardware and Software

Status of PL-Grid Hardware Infrastructure

Current status (March 2011):

Computational power

PL-Grid resources	in installation	current offer to (PL-Grid) users		
RONET: 53.5 Tflops	(+)	95 Tflops		
13.1 Tflops	29.6 Tflops	25 Tflops		
S: 23.2 Tflops	23.6 Tlops	30 Tflops		
SS: 40.9 Tflops	(+)	45 Tflops		
K: 29.9Tflops		29.9 Tflops		
3	RONET: 53.5 Tflops 13.1 Tflops SS: 23.2 Tflops 40.9 Tflops K: 29.9Tflops	FRONET: 53.5 Tflops (+) 13.1 Tflops 29.6 Tflops SS: 23.2 Tflops 23.6 Tlops SS: 40.9 Tflops (+)		

Total: 160.6 Tflops Goal (end 2011): 215 Tflops

Disk storage

◆ CYFRONET: 767 TBytes (+)
 ◆ ICM: 433 TBytes (+)
 ◆ PCSS: 300 TBytes (+)
 ◆ WCSS: 48 TBytes

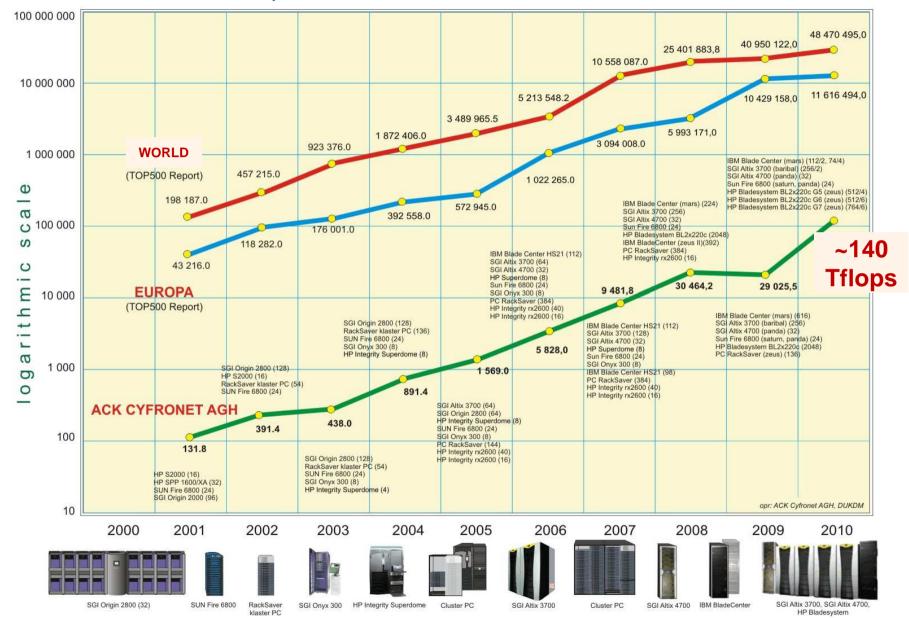
Total: 1580 TBytes Goal (end 2011): 2500 TBytes Increase of total performance and storage for users

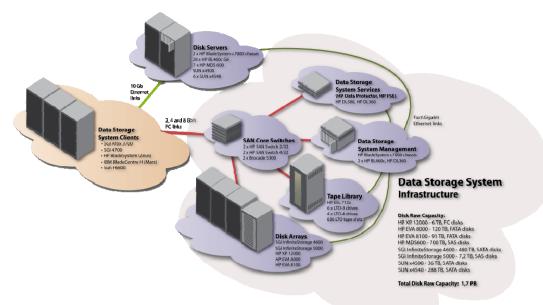
224.9 Tflops

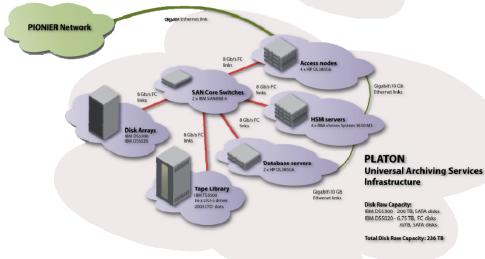
(→ Cyfronet example)

TOP500 Nov.2010 Polish Sites

Rank	Site	System	Cores	R _{max} Tflops	R _{peak} Tflops
84	Cyfronet Poland	Cluster Platform 3000 BL2x220, L56xx 2.26 Ghz, Infiniband Hewlett-Packard	9840	88.05	104.7
185	Nasza Klasa Poland	Cluster Platform 3000 BL2x220, L54xx 2.5 Ghz, GigE Hewlett-Packard	8464	46.55	84.64
249	QXL Poland SP ZOO Poland	Cluster Platform 3000 BL2x220, L54xx 2.5 Ghz, GigE Hewlett-Packard	7384	40.76	73.84
297	Gdansk University of Technology, CI Task Poland	ACTION Cluster Xeon E5345 Infiniband ACTION	5336	38.17	49.73
313	PCSS Poznan Poland	Cluster Platform 3000 BL2x220, E5530 2.4 Ghz, Infiniband QDR Hewlett-Packard	4616	37.18	44.31
372	Wroclaw Centre for Networking and Supercomputing Poland	Cluster Platform 3000 BL2x220, L56xx 2.66 Ghz, Infiniband Hewlett-Packard	3840	34.73	40.86





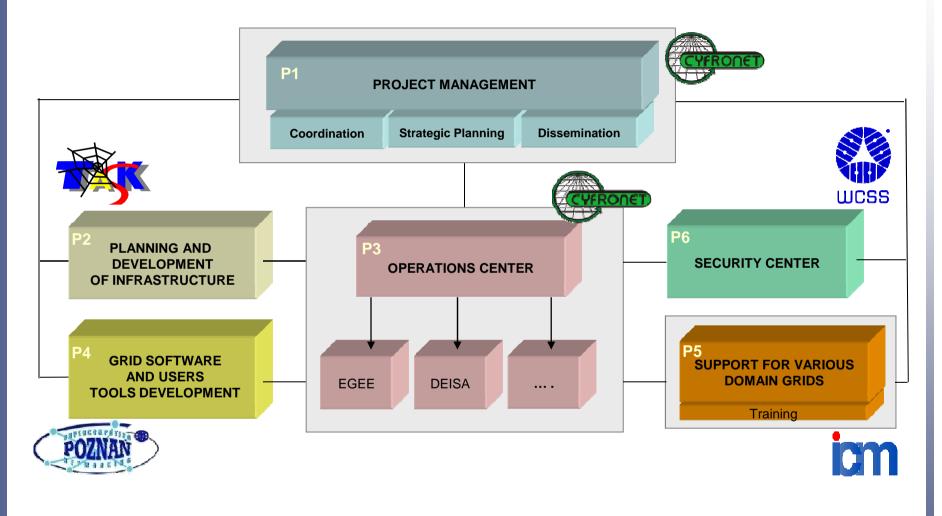

R_{peak} CYFRONET INSTALLED (Total)

CYFRONET Storage Resources (Total)

Total system disk storage 1,5 PB

Total system tape storage 3,5 PB

PL-GRID Project Progress



Organization of the PL-Grid project

WP2: Planning and Development of Infrastructure Servers rooms – megawatts

PL-Grid - modernization and development:

- Servers rooms
- Energy infrastructures
- Power supplies
- Cooling systems

PL-Grid effects:

- 5 modern server rooms
- Bigger surface
- Above 1MW power suplies each
- About 1MW cooling power each

Servers rooms – megawatts

← TASK - diesel generator 0.9 MW

ICM – ice water cooling system → 1.3 MW

ACK Cyfronet AGH

Air Condition

Servers and Storage

Server types:

- HP BladeSystem BL2x220 G7
- HP BladeSystem BL490c G6
- HP BladeSystem BL465c G6
- HP BladeSystem BL2x220 G6
- HP BladeSystem c7000 Enclosure
- HP BLc IB QDR Switch

Storage types:

- HP ProLiant DL160 G5.
- Sun X4540
- HP BladeSystem BL460 G6
- ♦ MDS 600
- ♦ SGI InfiniteStorage 4600
- NetApp 3140

Processors types:

- Intel Xeon
- AMD Opteron

ICM - HP BL465C G6 & SUN X4540

WP3: Computational Infrastructure for Scientists

- Available & Robust infrastructure is a key
 - Deployment of recently procured hardware status as of 1.03.2011

	CYFRONET	WCSS	PCSS	ICM	TASK
Computational Power [Cores]	8302	4300	3416	1152	3078 (vSMP)

- High Availability requires monitoring & incident reaction procedures
 - Grid service monitoring
 - Scientific applications
- Solving problems heldpesk.plgrid.pl
 - Ticket tracking system
 - Used by 102 researchers
 - Solution times: 83% of tickets solved by 14 days
 - Improvements: compliance with ITIL® recommendati

200

Do 3 dni

Do 14 dni

Do 7 dni

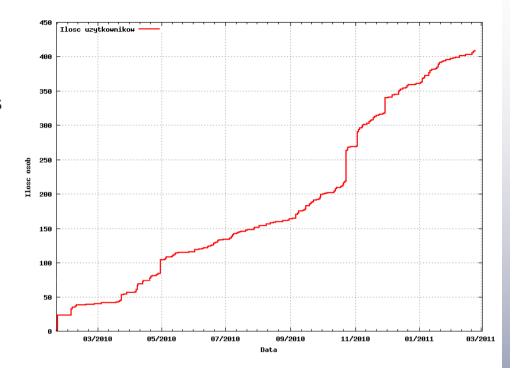
Time interval

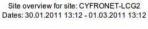
1210

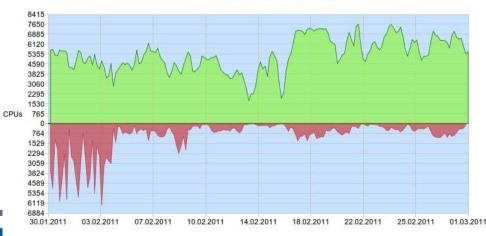
User account management - portal.plgrid.pl

- One username one password to all tools
- Getting X.509 certificate on-line
- Applying for access to services
 - Virtual Organization vo.plgrid.pl
 - User interface machines gLite UI
 - Local job submission cluster ZEUS
 - **Database services** (IV-V 2011)
- Applying for **PL-Grid computing grants** (IV 2011)

- PL-Grid courses
 - Subscription on-line
 - Access to infrastructure services (hands-on)
 - Access to BlackBoard platform




PL-Grid Users & Usage


- As of 1.03.2011
- Registered users: 409
 - Including 95 PL-Grid employees
- OPI owners: 92
- Wards (authorized by OPI owners): 222
- Resource usage
 VI.2010 I.2011
 - ♦ 647 CPU-years walltime
 - 950 cores occupied on average

Occupied job slots

Desired job slots

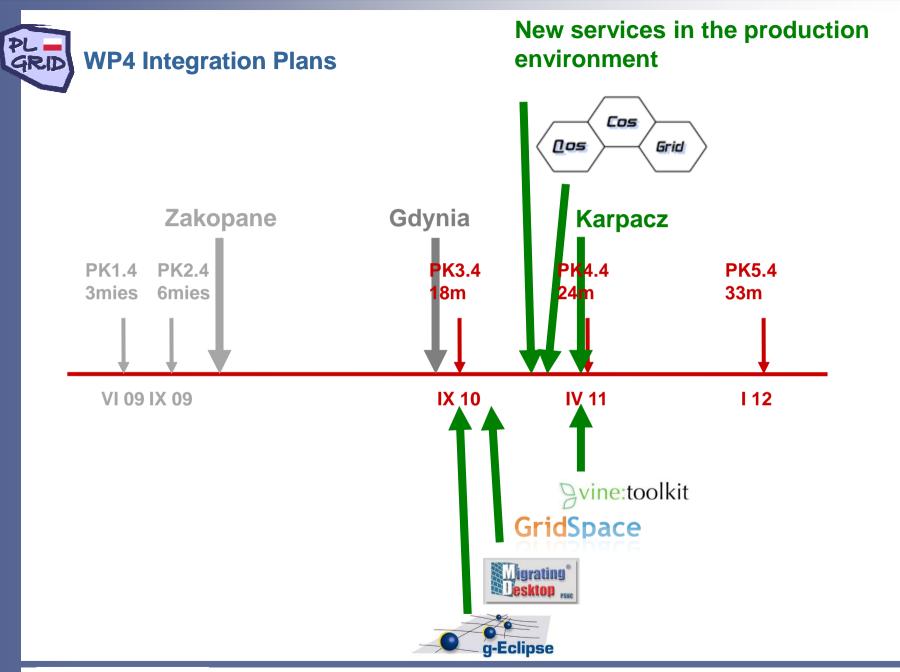
- CYFRONET ZEUS cluster usage over last month
 - Y-axis represents occupied cores
 - ♦ Max: 7637

Cooperation with European Grid

- PL-Grid is responsible for operating Polish part of European Grid Infrastructure which means maintaining the operational interface i.e:
 - Grid Infrastructure monitoring
 - Support System (ticket flow)
 - Accounting
 - Operational Security
 - Overall Coordination
 - Software rollout at sites
 - Reconfiguration mgmt

WP4: Achievements and New Tools

- Extension of GridSpace environment
- Implementation and provisioning advanced graphical interfaces for visualization and task management with usage Vine Toolkit
- Performance tests of new middleware QosCosGrid and it's integration with gLite and Unicore infrastructure.
- Integration of Migrating Desktop and gEclipse with many PL-GRID service
- New tools for virtual organization management FIVO
- Beta version of user and administrator tools: Bazzar, mobile access to the infrastructure, new security tools
- Integration of the developed tools with portal environment Liferay, and Nagios monitoring system



WP5 Users' Support

- Continuous activity
- Problems, questions send to:
 - e-mail: helpdesk@plgrid.pl
 - Web page : helpdesk.plgrid.pl (preferred direct access to experts)
- Typical groups of problems:
 - User registration
 - Usage of portal
 - General problems with gLite, UNICORE
 - Queues for Specific problems:
 - Chemistry/Biology
 - Fluid dynamics
 - High Energy Physics
 - others
 - Default queue (other problems)
- Goal: quick reaction with high competence

Scientific software packages

- Access to software packages is provided to users through:
 - gLite
 - UNICORE
- Examples of available packages in various fields:
 - biology: AutoDock, BLAST, ClustalW2, CPMD, Gromacs, NAMD
 - quantum chemistry: ADF, CFOUR, Dalton, GAMESS, Gaussian, Molcas, Molpro, MOPAC, NWChem, OpenBabel, Siesta, TURBOMOLE
 - physics: ANSYS FLUENT, Meep
 - numerical computations and simulation: Mathematica, MATLAB
 - other: Blender, POV-Ray
- Users may report us their expectations through a survey available at: http://www.plgrid.pl/ankieta
- The system of testing the software packages in the grid environment has been prepared and deployed
- The correctness of functioning of the packages is monitored automatically in each of the centers

Training and Users' Support

- Basic training on access to the PL-Grid infrastructure through gLite and UNICORE conducted in all centers participating in the project – in Gdańsk / Kraków / Poznań / Warszawa / Wrocław
- More advanced training (Chemistry, Computational Mechanics)
- Similar (free) training may be conducted in other centers, if necessary
- eLearning courses offered through the Blackboard system (available for registered users of the PL-Grid infrastructure)
 - PL-Grid for dummies
 - Introduction to gLite middleware
 - Usage of UNICORE
 - For LHCb users
 - Others in preparation
- Questions, proposals: <u>szkolenia@plgrid.pl</u>
- New User's Manual
 - Access via PL-Grid portal and from main PL-Grid page
 - For novice

New User's Manual

- Introduction
 - ♦ What is grid ? How to use it ?
 - Existing Applications
 - How to become a user?
- ♦ Establishing user's account using PL-Grid portal
 - standard
 - Account for training
- Application for certificate
 - Simple CA
 - Polish Grid CA (advanced)
- Using gLlite
 - Application for a service
 - Certificate registration or conversion
 - Register of Virtual Organization in PL-Grid
 - Using JDL language
 - Run a job
- Using UNICORE
 - ♦ Access to UNICORE
 - UNICORE environment
- Local access to resources
 - Application for the access
 - Login to computing clusters
 - Local jobs management
 - Auxiliary on-line documents
- Looking for support?
 - ♦ Address e-mail
 - Helpdesk Portal
 - Other resources

WP6: Security in PL-Grid

Security audits

- Thorough review of source code of critical system applications
- Dynamic security tests of crucial system components, including modern approaches like protocol and application level fuzzing
- Use of self developed auditing tools, i.e. XML fuzzer
- Security bugs identified and removed, software is certified before production deployment
- Security flaws found also in external software, like commercial and not commercial middleware.

Penetration tests

- Test of working infrastructure to check for misconfiguration errors and not up-todate software
- Both Black-Box and White-Box approaches
- Taken periodically
- As a result per-site vulnerability assessment
- Help provided to administrators in order to make their sites more secure and conform to the security policies

WP6: Security in PL-Grid

- ♦ EGI Computer Security Incident Response Team participation
 - Regular participation in international working meetings
 - Participation in regular meetings maintaining current incidents, vulnerabilities and other operational events
 - Security monitoring of Polish infrastructure using tools provided by EGI
 - Coordination and support for all security issues between EGI-CSIRT and Polish computing centers
 - Informing Polish computing centers about new vulnerabilities (often not yet published), incidents and ways to deal with them

Scientific software packages

- Access to software packages is provided to users through:
 - gLite
 - UNICORE
- Examples of available packages in various fields:
 - biology: AutoDock, BLAST, ClustalW2, CPMD, Gromacs, NAMD
 - quantum chemistry: ADF, CFOUR, Dalton, GAMESS, Gaussian, Molcas, Molpro, MOPAC, NWChem, OpenBabel, Siesta, TURBOMOLE
 - physics: ANSYS FLUENT, Meep
 - numerical computations and simulation: Mathematica, MATLAB
 - other: Blender, POV-Ray
- Users may report us their expectations through a survey available at: http://www.plgrid.pl/ankieta
- The system of testing the software packages in the grid environment has been prepared and deployed
- The correctness of functioning of the packages is monitored automatically in each of the centers

Conclusions

- Good and promising partial results of the PL-Grid Project
- Justified expectations to Project completion according to its goals and requirements
- Generic services and generic applications in development
- Futher developement needed, as identified currently, mainly on Domain Specific Grids
- Request from the users' communities
- Capacity for organization of future development according to
 - Expertise and experience
 - Strong scientific potential of the users' communities being represented by PL-Grid Partners
 - Wide international cooperation concerning the Consortium and individual Partners, good recognition worldwide
 - Good managerial capacity

Acknowledgements

- ACC Cyfronet AGH
 - Kazimierz Wiatr
 - Marian Bubak
 - Karol Krawentek
 - Andrzej Oziębło
 - Maciej Malawski
 - Zofia Mosurska
 - Robert Pająk
 - Marcin Radecki
 - Renata Słota
 - Mariusz Sterzel
 - Tomasz Szepieniec
 - Agnieszka Szymańska
 - Teresa Ozga

- ICM
 - Piotr Bała
 - Maciej Filocha
- PCSS
 - Norbert Meyer
 - Krzysztof Kurowski
 - Bartek Palak
 - Tomasz Piontek
 - Dawid Szejnfeld
 - Paweł Wolniewicz
- WCSS
 - Jerzy Janyszek
 - Bartłomiej Balcerek
- ◆ TASK
 - Rafał Tylman
 - Mścislaw Nakonieczny

http://www.plgrid.pl/en

