$1^{\text {st }}$ SuperB Collaboration Meeting Background Parallel session Sep. 14 $4^{\text {th }} 2011$

FullSim Production Report

Alejandro Pérez INFN - Sezione di Pisa

London SuperB Collaboration Meeting

Outline

a Latest Full-Simulation Production:

- BRN code validation
- New Fwd-EMC geometries
- Background frames production for FastSim
- Touschek simulation

BRN validation

a Migration to a Packaged version of Bruno code $\Rightarrow B R N$
a BRN code validation:

- Motivation: to verify that the simulation output is equivalent to the legacy bruno code
- The method: compare new code output with previous productions using old code (Elba production)
- Generate Rad-BhaBha events with same configuration for Elba
> Machine: SF10 V12
- Geometry: Geometry_CIPE_V00-00-02
- Production size is 10% of latest Elba Rad-BhaBha production: ~3000 bunch crossings

Fwd-EMC geometries

a Request from Stefano Germani to test different options for Fwd-EMC device

- Nominal configuration uses LYSO (Geometry_CIPE_V00-00-02)
- New geometries to be tested:
> CSI: Csi with VPT readout (Geometry_CIPE_CSI) BGO: Bgo with PMT readout (Geometry_CIPE_BGO)
a Production:
- Geometry_CIPE_CSI ~ 7.4k bunch crossings
- Geometry_CIPE_BGO ~ 10k bunch crossings

Background Frames for FastSim

a Request from Matteo Rama

- Wants to have the background frames for fastsim (bg-frames) as updated as possible
- Every scheduled FullSim production of machine backgrounds should produce as well the bg-frames
a Production (Geometry_CIPE_V00-00-02):
- Test and validation:
» ~6k bunch crossings of Rad-BhaBha with
\Rightarrow equivalent to 30 micro secs
, Status: being analysed
- Actual request size: 1000 micro secs $\Rightarrow \sim 1 \mathrm{M}$ bunch crossings
a Some issues:
- Jobs take too long (1.3 hours per event) due to detailed final focus model ($\pm 16 \mathrm{~m}$ from IP)
- Maybe it will be enough to produce bg-frames with a shorter final focus model

Touschek Background: Strategy

- Primaries for BRN: STAR code (Manuela Boscolo)
- Simulate both Touschek and the beam gas scattering along the beam line
- Transport the scattered particles along the lattice
- Detect the collisions of these particles with the beam pipes (scoring planes)
- Typical output:

$0.456014 \mathrm{E}-01$	$-0.570537 \mathrm{E}-02$
7620E-0	-0.592
0.432248E-01	-0.531
$x(\mathrm{~m})$	$\frac{\mathrm{d} x}{\mathrm{~d} s}(\mathrm{rad})$

$-0.126830 \mathrm{E}-05$
$-0.260276 \mathrm{E}-04$
-0.210435 E
-0.04
$-0.179759 \mathrm{E}-04$
$y(\mathrm{~m})$

$0.376408 \mathrm{E}-06$	1.71000
$0.118356-04$	1.71000
$0.873927 \mathrm{~F}-05$	1.71000
$0.663319 \mathrm{E}-05$	1.71000
$\frac{\mathrm{~d} y}{\mathrm{~d} y}(\mathrm{rad})$	$s(\mathrm{~m})$

$$
\begin{gathered}
-0.239831 \mathrm{E}-01 \\
-0.252154 \mathrm{E}-01 \\
-0.249482 \mathrm{E}-01 \\
-0.236050 \mathrm{E}-01 \\
\frac{\Delta E}{E}
\end{gathered}
$$

$$
\begin{aligned}
& 0.818628 \\
& 0.755761 \\
& 0.778852 \\
& 0.997186
\end{aligned}
$$

$f(\mathrm{KHz})$ \#turn

Touschek Background: Samples (I)

Losses near the IP

Frequencys

Sdistritition

FrequencyS

Touschek Background: Samples (II)

Touschek Background: Samples (III)

a Touschek Losses are mainly located in the downstream direction of the beam pipe
a One issue:

- STAR code uses a physical aperture bigger than BRN: pipe radius 4 cm (STAR) instead of 2.5 cm (BRN)
- Touschek background rates are expected to be underestimated with the current samples
— Shields
- Dipoles
- Touschek Losses

