1st SuperB Collaboration Meeting Background Parallel session Sep. 14th 2011

FullSim Production Report

Alejandro Pérez INFN – Sezione di Pisa

Latest Full-Simulation Production:

- BRN code validation
- New Fwd-EMC geometries
- Background frames production for FastSim
- Touschek simulation

BRN validation

■ Migration to a Packaged version of Bruno code ⇒ BRN

BRN code validation:

- Motivation: to verify that the simulation output is equivalent to the legacy bruno code
- The method: compare new code output with previous productions using old code (Elba production)
- Generate Rad-BhaBha events with same configuration for Elba
 - Machine: SF10 V12
 - Geometry: Geometry_CIPE_V00-00-02
- Production size is 10% of latest Elba Rad-BhaBha production: ~3000 bunch crossings

Fwd-EMC geometries

- Request from Stefano Germani to test different options for Fwd-EMC device
 - Nominal configuration uses LYSO (Geometry_CIPE_V00-00-02)
 - New geometries to be tested:
 - CSI: Csi with VPT readout (Geometry_CIPE_CSI)
 - BGO: Bgo with PMT readout (Geometry_CIPE_BGO)
- Production:
 - Geometry_CIPE_CSI ~ 7.4k bunch crossings
 - Geometry_CIPE_BGO ~ 10k bunch crossings

Background Frames for FastSim

Request from Matteo Rama

- Wants to have the background frames for fastsim (bg-frames) as updated as possible
- Every scheduled FullSim production of machine backgrounds should produce as well the bg-frames
- Production (Geometry_CIPE_V00-00-02):
 - Test and validation:
 - ~6k bunch crossings of Rad-BhaBha with
 - ⇒ equivalent to 30 micro secs
 - Status: being analysed
 - Actual request size: 1000 micro secs ⇒ ~1M bunch crossings

Some issues:

- Jobs take too long (1.3 hours per event) due to detailed final focus model (±16m from IP)
- Maybe it will be enough to produce bg-frames with a shorter final focus model

Touschek Background: Strategy

Primaries for BRN: STAR code (Manuela Boscolo)

- Simulate both Touschek and the beam gas scattering along the beam line
- Transport the scattered particles along the lattice
- Detect the collisions of these particles with the beam pipes (scoring planes)

Typical output:

0.445558E-01	-0.550303E-02	-0.126830E-05	0.376408E-06	1.71000	-0.239831E-01	0.818628	1
0.456014E-01	-0.570537E-02	-0.280276E-04	0.113856E-04	1.71000	-0.252154E-01	0.755761	1
0.474620E-01	-0.592261E-02	-0.210435E-04	0.873927E-05	1.71000	-0.249482E-01	0.778852	1
0.432248E-01	-0.531700E-02	-0.179759E-04	0.663319E-05	1.71000	-0.236050E-01	0.997186	1
x (m)	$\frac{\mathrm{d}x}{\mathrm{d}s}$ (rad)	y (m)	$\frac{\mathrm{d}y}{\mathrm{d}s}$ (rad)	s (m)	$\frac{\Delta E}{E}$	f (KHz)	#turn

Touschek Background: Samples (I)

Touschek Background: Samples (II)

Touschek Background: Samples (III)

Touschek Losses are mainly located in the downstream direction of the beam pipe

- PipesShields
- Dipoles
- Touschek
 Losses

- One issue:
 - STAR code uses a physical aperture bigger than BRN: pipe radius 4cm (STAR) instead of 2.5cm (BRN)
 - Touschek background rates are expected to be underestimated with the current samples

