Preamplifier R&D at University of Montreal for the drift chamber J.P. Martin, Paul Taras

Objective

Develop a large bandwidth preamplifier optimized for cluster counting.

Challenge

Combine large bandwidth with good signal to noise ratio.

<u>Obstacles</u>

-The sense wires / field wire matrix forms a transmission line with a high characteristic impedance.

- Remote preamplifier connection requires a transmission line (50 ohms)

- The sense wires have substantial resistivity

- Even a very small capacitive loading on the sense wire produces a significant high frequency loss.

The lossy transmission line model

Sense wire + field wires < == > Coaxial transmission line with ohmic losses

R-L-C-G model

NOTE: frequency dependant skin effect for R with is not included in the model

LOSSY TRANSMISSION LINE MODEL

1) Exact termination, no capacitive load

Attenuation VS frequency

Pulse shape VS line length, 10 femto-coulomb pulse, R load = 452 ohms, C load = 0

1) Without a capacitive load the rise-time is preserved

2) Significant attenuation with length

Pulse shape VS line length, 10 femto-coulomb pulse, 452 ohms , 1 pf load

With a capacitive load, rise time is increased independently of length. Capacitive load should not be much more than 1 pf.

Pulse shape VS line length, 10 femto-coulomb pulse, 1 pf load, 50 ohms termination

Lower impedance (50 ohms) increases the bandwidth, but the amplitude is reduced by a factor 4.5 in this example Frequency response, 1 pf load, 452 ohms

With 1 pf load : relative -3 dB point = 700 MHz

Signal to noise issues

Noise and signal at the end of the transmission line, 10 femto-coulomb 1 nsec current pulse signal (no amplifier noise)

	Termination impedance at sense wire readout end (452 ohms at other end)	Amplitude at termination	RMS Thermal noise at termination resistor from 100 K Hz to 1 GHz	Signal amplitude/ RMS voltage noise (w 50 ohms	s amp)
2.7m	50	80 µV	27 µV	3 (0.95)	
	452	380 µV	37 µV	10	
	5000	600 µV	20 µV	30	
0.001n	٦				
	50	480 µV	27 µV	18 (5.6)	
	452	2800 µV	60 µV	47	
	5000	4500 µV	57 µV	79	

* RMS input referred noise of a typical low noise (6dB noise figure) 50 ohms fast amplifier = 80 µV

Signal to noise issues (2)

Options:

High input impedance amplifier on endplate (not common at high bandwidth)
Low input impedance amplifier with impedance matching:

- Transformer on endplate? (not obvious in a magnetic field)
- Active element on endplate? (rad-tolerant?)
- 3) Low impedance amplifier with impedance mismatch (can be remote and rad-soft, good bandwidth, unfavorable S/N ratio)

⇒Present work at Montreal: <u>Active 50 ohms line driver at the sense wire</u> + remote commercial RF amplifier chips

Line driver response in 50 ohms load (blue line) Sense wire termination: 452 ohms Source: 10 femto-coulombs 1 ns pulse at 1 m from endplate

CONCLUSIONS

Output noise of circuit, for 1m position : 43 μV in 50 ohms load Input referred noise with a

50 ohms post amplifier	:	90 µV
Output amplitude, 10 fc 1ns pulse	:	950 µV
S/N Ratio	:	10.5

S/N Ratio without matching to

50 ohms amplifier:	0.001m	:	5.6
	1.0m	:	4.0
	2.7m	:	0.95

= → Ratio of signal amplitude/RMS noise can be improved by a factor 2.5