

•IFR Background Report

Valentina Santoro INFN Ferrara

14/09/2011

INFN

1st SuperB Collaboration Meeting

Hot regions

Barrel: innermost layers, mostly neutronsFWD encaps (hottest region) : inner layer and outer layers (BEAM halo), neutrons, electron and photonsBWD encaps: inner layer and small radii

Valentina Santoro

- Validation studies
- Radiative BhaBha events (Elba 2011 production)

utline

- Tousheck background
 - Detailed neutron background analysis
 - Electrons, photons, background studies

Validation of the new production: Neutrons Energy distribution vs time

London 2011

Elba 2011

The peak at low energy is due to the fact that the neutrons evolve for a longer time in the London production

Red: Elba 2011 Production Blue: London 2011 Production

The rates in Z are consistent between the two productions

rB Collaboration Meeting

Validation of the new production: Neutrons Energy distribution

Validation of the new production: Photons and Electrons

IFR Barrel Energy distributions

Energy distributions and rate for electrons and photons are consistent between the two productions

Radiative BhaBha background crossing SuperB the IFR detector

Why do we have to worry about neutrons

- Neutrons damage silicon devices → Neutrons damage SiPM
- The silicon damage function has a strong dependance on the energy spectrum therefore we scaled all the doses in this presentation to 1MeV equivalent accordingly to ASTM E 722 93.

Neutron Energy Distributions

Rate Layer0: Barrel

Normalized to 1MeV energy

X

Neutrons rate for different layers

Rate vs Z-coordinate for Barrel

Rate of 450Hz/cm² -> about 3x10⁹ neutrons/cm² for a year

Rate vs radius for BWD Endcap

Rate vs radius for FWD Endcap

Why do we have to worry about photons

 High Energy Photons convert in e⁺e⁻ that produce signal in the detector

Photons

Photon Energy Distributions

γ rates for Different layers Rate vs Z-coordinate for Barrel

Rate vs radius for FWD Endcap

Valentina Santoro

r (cm)

Why do we have to worry about electrons

• Electrons are charged particle that produce signals

Electron Energy Distributions

Backward Endcap

Valentina Santoro

1° SuperB Collaboration Me

z(cm)

Radiative BhaBha background crossing the IFR FEE boards

Present layout of the IFR crates

Valentina Santoro

1° SuperB Collaboration Meeting

20

Neutron Rate for FEEs Electronics (Barrel)

 Hz/cm^2

To see the plots with better resolution http://www.fe.infn.it./ ~santoro/SuperB/ Background/Neutrons/ Touschek.html

Electrons Rate for FEE Electronics Barrel

Hz/cm²

rB

To see the plots with better resolution http://www.fe.infn.it./ ~ santoro/SuperB/ Background/Electrons/ Touschek.html

- We have the same information for the FEEs in the Forward and Backward Endcaps
- The code for analyzing the background on the FEEs is now in place we are working with our electronic expert to have a complete knowledge of the impact of the background to our FEEs

Touschek events studies

The Touschek events in this presentation come from the HER

Valentina Santoro

1° SuperB Collaboration Meeting

Neutron Energy Distributions for Touschek HER events

Forward Endcap

-2

0

Backward Endcap

Normalized to 1MeV energy

X

700

600

500(

400(

300(

200(

100

600(

5000

4000

300(

200(

100(

700(

600(

500(

400

3000

2001

100

35

35

35

40

45

45

40

40

SX3

45

Rate for different layers for Touschek events: Barrel

Rate vs Z-coordinate

Valentina Santoro

1° SuperB Collaboration Meeting

FWD Endcap Touschek events

FWD ENDCAP

LO

n Meeting

L3

Rate vs Radius for FWD Endcap for Different layers

Normalized to 1MeV energy

Summary

What we have done:

- Neutrons background crossing the IFR studied using the Elba 2011 Production
- Photons and Electron backgrounds has been studied in details for the first time
- Background from Electrons and Neutrons on FEEs boards studied
- Touschek background studied for the HER

What we will have to do

- Touschek background studies for the LER (one week)
- Add shielding for the Endcap outer layers (one week)
- Estimate the FEEs doses (few days)

For additional plots and information

http://www.fe.infn.it./~santoro/SuperB/Background/