

Update on SVT/DCH Background studies using FullSim Riccardo Cenci

University of Maryland

SuperB Collaboration Meeting, QMUL, London

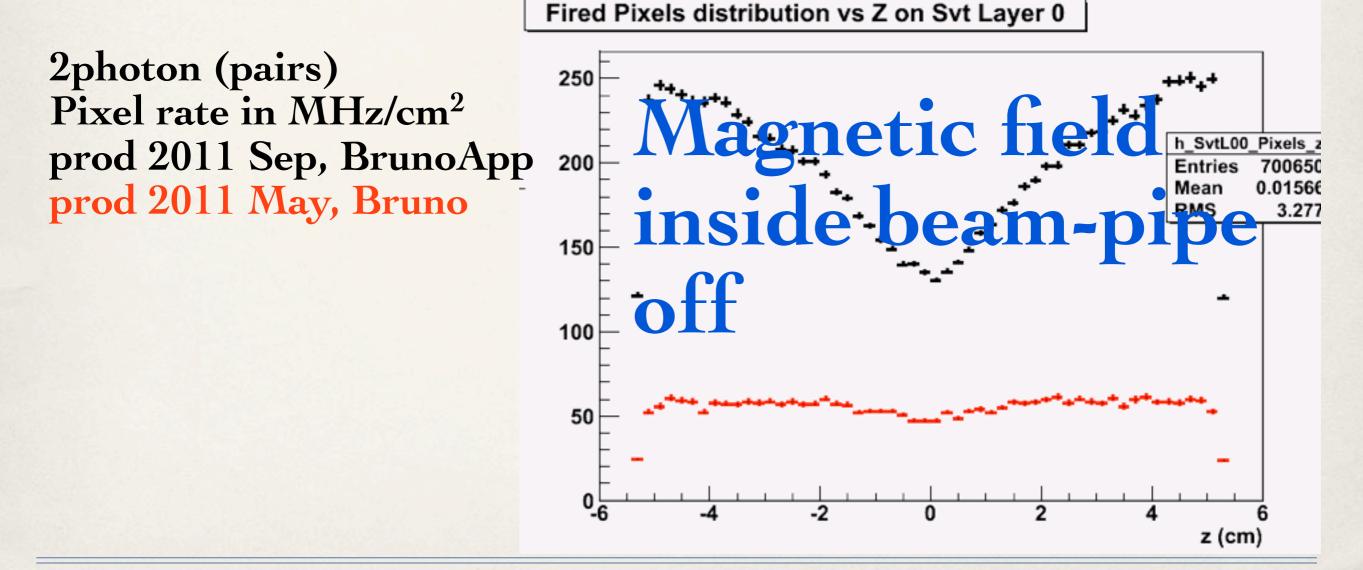
Sep 14th, 2011

Introduction

- •Better agreement between my and Trieste's results for Svt background rates (see talk in parallel session)
- •After Elba meeting, packaged version of FullSim (BrunoApp) was available
- •New productions available using this packaged version
- •Additional hit information to remove cylindrical approximation in Svt when calculating rates
- Validation of packaged version is needed

BrunoApp and new productions

- •While finishing transition to packaged version, additional debugging of Bruno (Geant4, too) was done by FullSim people
- Packaged version of FullSim (BrunoApp) was available only late, so not so much time for improvement
- •New productions:
 - Official-London, RadBhabha (~3k evts, 11us, low stat): BrunoApp V0.0.0, 1mm step limit
 - Issue: old version of hits, not able to process those files using my macro w/o major changes
 - Official-London, Touschek/BeamGas: same as previous one, same issue, additional technical problem with normalization
 - Personal, 2photons (1.9M evts, 250us): BrunoApp V0.0.1, no step limit, single Coulomb scattering, improved hit information
- Following plot only from personal production


Development on packaged version

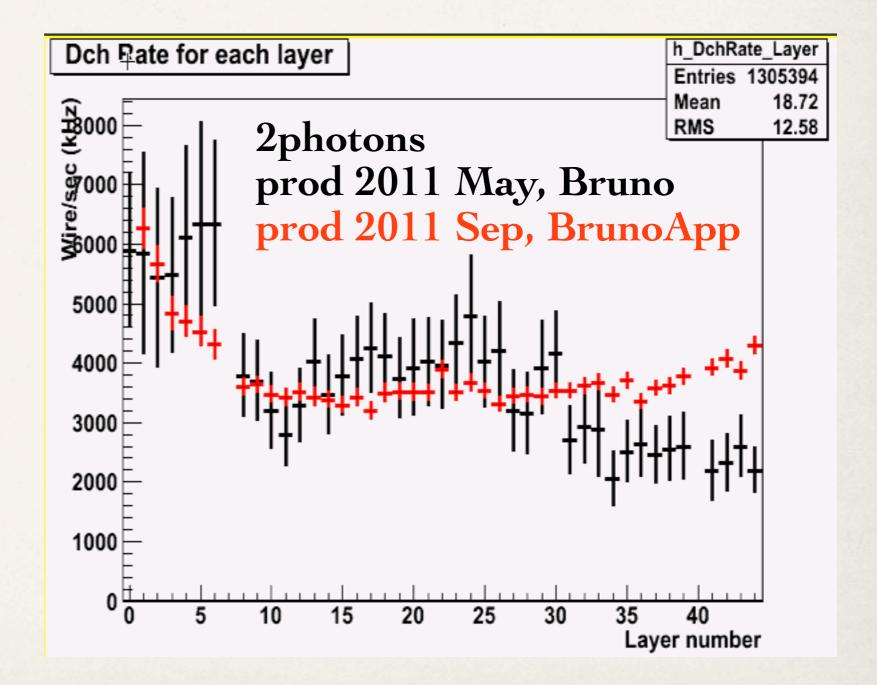
- •Approximation: number of fired pixel/strip is calculated over a cylindrical surface, not on a flat one
- •Removing that storing hit coordinates for the active silicon volume (plus module and wafer number)
- •These coordinates can be retrieved from G4, now added to the hit classes
- •Rate wafer by wafer, rate vs phi and more
- •Svt hit (BrnSvtGHit, BrnRootSvtHit) are now classes derived from generic hit classes, BrnGHit and BrnRootHit
- •Additional work to fix bugs from transition and adapt code to the new frame
 - E.g. compile a shared library to be loaded by Root macros
- •Stuck simulation bug now understood: caused by a kind of volume, now replaced (thanks to Andrea and Alejandro)

Preliminary results

• Rates are much higher than before, specially for L0 (~x4)

- Usual problem with magnetic field, need to reprocess them
- Still using global coordinates, need more work to move to local coordinates

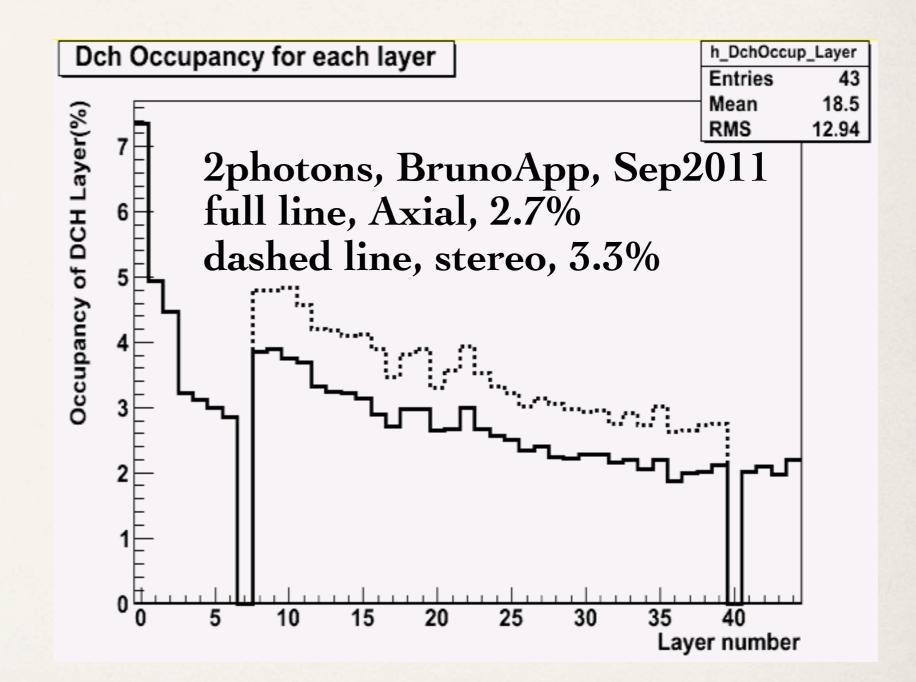
Preliminary results


- Rates are much higher than before, specially for L0 (~x4)
- Usual problem with magnetic field, need to reprocess them
- Still using global coordinates, need more work to move to local coordinates

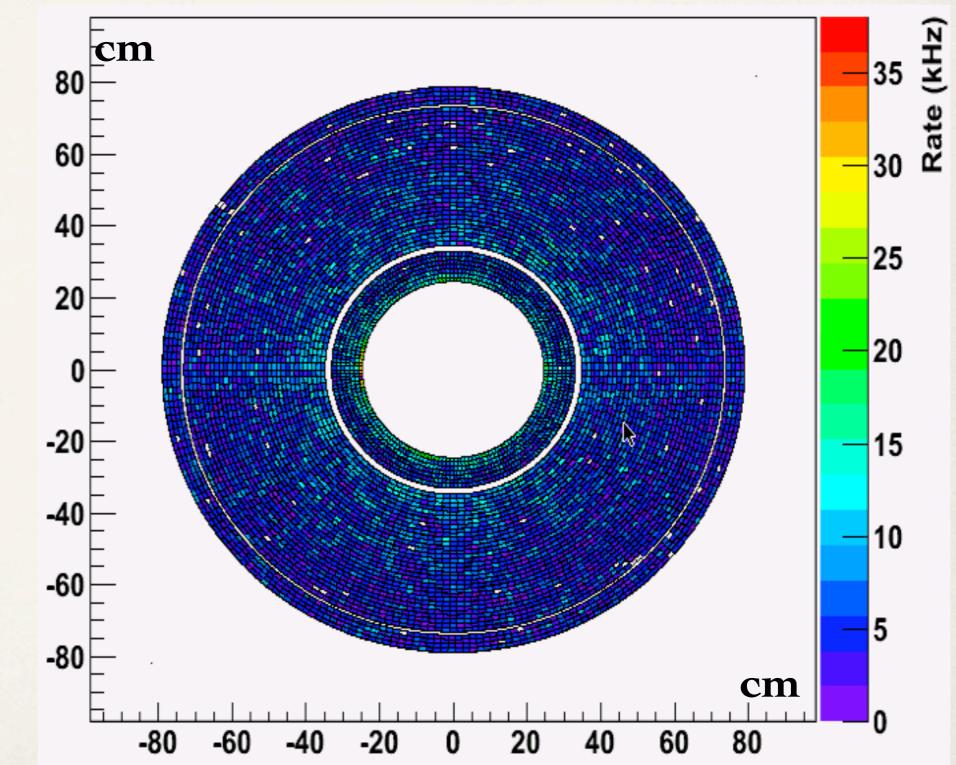
		Magnet	tic fiel	d insie	de LAYER 1	Dec2010	May2011	Sep2011	
LAYER 0	Dec2010	Deam-p May2011	Sep2011		Cluster rate	0.43	0.22	0.55	MHz/ cm2
Cluster			31.3	MHz/	Cluster multip	2.12	10.88	6.4	
rate	6.44	6.37	31.3	cm2	Pixel	0.91	2.56	3.5	MHz/
Cluster multip	8.1	8.1	6.4		rate Fluency	5 40E+10	1 80E+11	2.80E+11	cm2
Pixel rate	56.1	55.6	201.2	MHz/ cm2	Dose	0.03	0.11	0.22	MRad
Fluency	4.79E+12	4.73E+12	1.26E+13	cm-2					
Dose	3.61	3.58	15.6	MRad					

Dch rate (preliminary)

 Validation of packaged release, similar rate


 It looks higher than what we were observing, is now an important contribution?

Dch Occupancy (preliminary)


•Stereo contribution is still evident

 Occupancy not so small, effects of magnetic field turned off inside beampipe

Map for cell rate

- Still 2photons
- Fill the map with rate for each cell
- 250us
- A cell fired once during 250us = 4kHz
- Higher statistics needed to spot which ones are the hot areas, it looks still isotropic

Conclusions

- •Packaged version finally delivered, validation is still pending
- •Better agreement between my and Trieste's results for Svt
- Various technical problems to be addressed to process RadBhabha and Touschek (fixes are ready to be committed, then re-run the productions)
 - •First personal production of 2photons bkg (aka pairs) with BrunoApp, fake high bkg (wrong magnetic field)
 - •Cylindrical approximation has been removed, soon strip rate module by module

Results L0,1,2

- •Same values for L0
- •Lower cluster rate, but higher pixel rate, fluency and dose for other layers

LAYER 1	Dec2010	May2011	
Cluster rate	0.43	0.22	MHz/cm2
Cluster multip	2.12	10.88	
Pixel rate	0.91	2.56	MHz/cm2
Fluency	5.40E+10	1.80E+11	cm-2
Dose	0.03	0.11	MRad

LAYER 0	Dec2010	May2011	
Cluster rate	6.44	6.37	MHz/cm2
Cluster multip	8.1	8.1	
Pixel rate	56.1	55.6	MHz/cm2
Fluency	4.79E+12	4.73E+12	cm-2
Dose	3.61	3.58	MRad
LAYER 2	Dec2010	May2011	
Cluster rate	0.23	0.12	MHz/cm2
Cluster multip	1.98	10.54	
Pixel rate	0.48	1.31	MHz/cm2
Fluency	2.91E+10	9.80E+10	cm-2
Dose	0.017	0.057	MRad

Riccardo Cenci

SuperB Collaboration Meeting, QMUL, London, Sep 13, 2011

Results L3-5

- •Same values for L0
- •Lower cluster rate, but higher pixel rate, fluency and dose for other layers

LAYER 4	Dec2010	May2011	
Cluster rate	7.2	5.8	kHz/cm2
Cluster multip	1.63	7.68	
Pixel rate	11.9	31.6	kHz/cm2
Fluency	5.90E+08	1.88E+09	cm-2
Dose	0.5	1.8	kRad

LAYER 3	Dec2010	May2011	
Cluster rate	67.2	37.6	kHz/cm2
Cluster multip	1.91	9.96	
Pixel rate	131	342	kHz/cm2
Fluency	7.95E+09	2.57E+10	cm-2
Dose	5	15	kRad
LAYER 5	Dec2010	May2011	
Cluster rate	3.8	3.4	kHz/cm2
Cluster multip	1.66	6.97	
Pixel rate	6.1	15.3	kHz/cm2
Fluency	2.18E+08	7.00E+08	cm-2
Dose	0.3	1.0	kRad

Riccardo Cenci

SuperB Collaboration Meeting, QMUL, London, Sep 13, 2011

Multiplicity comparison

• Comparison with values from Trieste (Apr 2011)

• Different geometry, but now same pitches

• Updated results from Trieste should be presented tomorrow by Lorenzo V.

LAYERS	Old geometry Apr2011 (Trieste) Multipl.	May2011 Multipl.	May2011 Rates [MHz/cm2]	May2011 Pixel rate [MHz/cm2]	
L0 phi	5.3	4.1	23.3	EE E	
L0 z	5.2	5.1	29.9	55.5	
L1 phi	7.3	6.5	1.5		
L1 z	3.8	3.2	0.7	2.0	
L2 phi	7.1	5.9	0.72	0.00	
L2 z	3.7	2.9	0.35	0.96	
L3 phi	8.2	4.9	0.194	0.05	
L3 z	3.9	2.6	0.097	0.25	
L4 phi	3.9	2.0	0.012	0.014	
L4 z	1.6	1.3	0.0076		
L5 phi	3.1	1.8	0.006	0.007	
L5 z	1.9	1.3	0.0041		

Riccardo Cenci

14

SuperB Collaboration Meeting, QMUL, London, Sep 13, 2011