

Probing ALPs with $K \rightarrow \pi a$

Claudia Cornella (JGU Mainz) June 2024 || Capri

based on 2308.16903 and work in progress with A. Galda, M. Neubert and D. Wyler

Looking for ALPs with flavor

Low-energy weak processes impose some of the most stringent "particle bounds" on ALP couplings. Here focus on $K \rightarrow \pi a$:

- has been studied for a long time, starting with Georgi, Kaplan & Randall in 1986
- previous calculations used implementation of weak currents in the chiral Lagrangian. "Real" branching ratio is ~ 37 times larger [Bauer, Neubert, Renner, Schnubel (2021)]
- strongest particle constraint on ALP couplings to gluons and light quarks for $m_a < m_K m_\pi \sim 354$ MeV

Looking for ALPs with flavor

Low-energy weak processes impose some of the most stringent "particle bounds" on ALP couplings. Here focus on $K \rightarrow \pi a$:

- has been studied for a long time, starting with Georgi, Kaplan & Randall in 1986
- previous calculations used implementation of weak currents in the chiral Lagrangian. "Real" branching ratio is ~ 37 times larger [Bauer, Neubert, Renner, Schnubel (2021)]
- strongest particle constraint on ALP couplings to gluons and light quarks for $m_a < m_K m_\pi \sim 354$ MeV

Only LO calculation in χ PT. What happens at NLO?

- In this talk: Inclusion of the ALP in the QCD and weak chiral Lag. at LO and NLO
 - Some details on the calculation
 - Discussion of the results

Effective ALP Lagrangian at low energies

Start from the ALP+SM effective Lagrangian around $\mu_{\chi} = 4\pi F_{\pi} \sim 1.6$ GeV. [Georgi, Kaplan, Randall (1986)] [Georgi, Kaplan, Randall (1986)]

soft breaking of shift symmetry
$$a \rightarrow a + c$$
 anomalous couplings to gauge fields

$$\mathcal{L}_{eff} = \mathcal{L}_{QCD} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{\gamma\gamma} \frac{\alpha}{4\pi} \frac{a}{f} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\partial_{\mu} a}{f} (\bar{q}_{L} k_{Q} \gamma^{\mu} q_{L} + \bar{q}_{R} k_{q} \gamma^{\mu} q_{R}),$$

$$+ \frac{\partial_{\mu} a}{f} (\bar{q}_{L} k_{Q} \gamma^{\mu} q_{L} + \bar{q}_{R} k_{q} \gamma^{\mu} q_{R}),$$
alp decay constant f >> v
derivative couplings to fermions

Effective ALP Lagrangian at low energies

Start from the ALP+SM effective Lagrangian around $\mu_{\chi} = 4\pi F_{\pi} \sim 1.6$ GeV. [Georgi, Kaplan, Randall (1986)]

soft breaking of shift symmetry
$$a \rightarrow a + c$$
 anomalous couplings to gauge fields

$$\mathcal{L}_{eff} = \mathcal{L}_{QCD} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{\gamma\gamma} \frac{\alpha}{4\pi} \frac{a}{f} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\partial_{\mu} a}{f} (\bar{q}_{L} k_{Q} \gamma^{\mu} q_{L} + \bar{q}_{R} k_{q} \gamma^{\mu} q_{R}),$$

$$= \frac{\partial_{\mu} a}{f} (\bar{q}_{L} k_{Q} \gamma^{\mu} q_{L} + \bar{q}_{R} k_{q} \gamma^{\mu} q_{R}),$$

$$= alp decay constant f >> v$$

$$= derivative couplings to fermions$$

A chiral transformation can be used to remove the ALP-gluon coupling: [Srednicki (1985); Georgi, Kaplan, Randall (1986); Krauss, Wise (1986); Bardeen, Peccei, Yanagida (1987)]

$$q(x) \to e^{-ic_{GG}\frac{a}{f}\kappa_q\gamma_5}q(x) \qquad \langle \kappa_q \rangle = \kappa_u + \kappa_d + \kappa_s = 1$$

The κ_q must drop out of physical predictions!

June 2024 || Capri

QCD chiral Lagrangian at O(p²)

Below $\mu_{\chi} = 4\pi F_{\pi} \sim 1.6$ GeV, the light pseudo-scalar mesons π, η, K take the place of quarks and gluons. We describe them using **Chiral Perturbation Theory** (χ **PT**).

• Dofs
$$\Sigma_0(x) = \exp\left[\frac{i\sqrt{2}}{F}\Phi(x)\right], \quad \Phi(x) = \lambda^a \pi^a(x) \quad \det \Sigma_0 = 1$$

meson decay constant $F \simeq F_{\pi} = 130 \,\mathrm{MeV}$

• Power counting $\lambda \sim \frac{p}{4\pi F}$ $\Sigma_0 \sim 1$ $(\partial_\mu \Sigma_0)^n \sim \lambda^n \sim p^n$

• Symmetries gauge symmetry, $G_{\chi} = SU(3)_L \times SU(3)_R$ for $m_q \to 0$: $\Sigma_0 \to g_L \Sigma_0 g_R^{\dagger}$

The most general Lagrangian invariant under G_{γ} is

$$\mathcal{L}_{\rm QCD}^{(p^2)} = \frac{F^2}{8} \langle \left(D_{\mu} \Sigma_0 \right) \left(D^{\mu} \Sigma_0^{\dagger} \right) \rangle$$

QCD chiral Lagrangian at O(p²)

Below $\mu_{\chi} = 4\pi F_{\pi} \sim 1.6$ GeV, the light pseudo-scalar mesons π, η, K take the place of quarks and gluons. We describe them using **Chiral Perturbation Theory** (χ **PT**).

• Dofs
$$\Sigma_0(x) = \exp\left[\frac{i\sqrt{2}}{F}\Phi(x)\right], \quad \Phi(x) = \lambda^a \pi^a(x) \quad \det \Sigma_0 = 1$$

meson decay constant $F \simeq F_{\pi} = 130 \,\mathrm{MeV}$

• Power counting $\lambda \sim \frac{p}{4\pi F}$ $\Sigma_0 \sim 1$ $(\partial_\mu \Sigma_0)^n \sim \lambda^n \sim p^n$

• Symmetries gauge symmetry, $G_{\chi} = SU(3)_L \times SU(3)_R$ for $m_q \to 0$: $\Sigma_0 \to g_L \Sigma_0 g_R^{\dagger}$

The most general Lagrangian invariant under G_{γ} is

$$\mathcal{L}_{\text{QCD}}^{(p^2)} = \frac{F^2}{8} \langle (D_\mu \Sigma_0) (D^\mu \Sigma_0^{\dagger}) \rangle + \frac{F^2}{8} \langle \chi \Sigma^{\dagger} + \Sigma \chi^{\dagger} \rangle \qquad \begin{array}{l} \chi = 2B_0 m_q \\ \chi \to g_L \chi g_R^{\dagger} \end{array}$$

Quark masses break G_{γ} in a specific way: incorporated as spurions.

June 2024 || Capri

QCD chiral Lagrangian at O(p²), with arbitrary sources

Any interaction of quarks & gluons can be written in terms of **sources**

$$\mathcal{L}_{\text{eff}} \ni \bar{q}(x) \left[l_{\mu}(x) \gamma^{\mu} P_L + r_{\mu}(x) \gamma^{\mu} P_R - s + i\gamma_5 p \right] q(x) - \frac{\alpha_s}{8\pi} \theta(x) G^a_{\mu\nu}(x) \tilde{G}^{\mu\nu,a}(x)$$

These break G_{γ} in a specific way,

and can be treated as **spurions** by assigning them transformation properties under G_{γ} :

$$2B_0(s+ip) = \chi \to g_L \chi g_R^{\dagger}, \qquad l_\mu \to g_L \, l_\mu \, g_L^{\dagger}, \qquad r_\mu \to g_R \, r_\mu \, g_R^{\dagger}$$

QCD chiral Lagrangian at O(p²), with arbitrary sources

Any interaction of quarks & gluons can be written in terms of **sources**

$$\mathcal{L}_{\text{eff}} \ni \bar{q}(x) \left[l_{\mu}(x) \gamma^{\mu} P_L + r_{\mu}(x) \gamma^{\mu} P_R - s + i\gamma_5 p \right] q(x) - \frac{\alpha_s}{8\pi} \theta(x) G^a_{\mu\nu}(x) \tilde{G}^{\mu\nu,a}(x)$$

These break G_{γ} in a specific way,

and can be treated as **spurions** by assigning them transformation properties under G_{γ} :

$$2B_0(s+ip) = \chi \to g_L \chi \, g_R^{\dagger} \,, \qquad l_\mu \to g_L \, l_\mu \, g_L^{\dagger} \,, \qquad r_\mu \to g_R \, r_\mu \, g_R^{\dagger}$$

In presence of a θ source,

$$G_{\chi} = SU(3)_L \times SU(3)_R \quad \to \quad G'_{\chi} = U(3)_L \times U(3)_R$$
$$\det \Sigma_0 = 1 \quad \to \quad \det \Sigma(x) = e^{-i\theta(x)}$$
$$\Sigma_0(x) \quad \to \quad \Sigma(x) = e^{-\frac{i}{2}\theta(x)\kappa_q} \Sigma_0(x) e^{-\frac{i}{2}\theta(x)\kappa_q}$$

heta transforms non-linearly under G'_{χ} , instead $D_{\mu}\theta = \partial_{\mu}\theta - 2\langle a_{\mu}\rangle$ is a singlet of G'_{χ} $a_{\mu} = rac{r_{\mu} - l_{\mu}}{2}$

June 2024 || Capri

The ALP as a source

For the ALP, the sources are

$$s = m_q, \ p = 0, \quad l_\mu(x) = k_Q \frac{\partial_\mu a(x)}{f}, \quad r_\mu(x) = k_q \frac{\partial_\mu a(x)}{f}, \ \theta(x) = -2c_{GG} \frac{a(x)}{f}.$$

So the QCD chiral Lagrangian at $\mathcal{O}(p^2)$ including the ALP is:

$$\mathcal{L}_{\text{QCD}}^{(p^2)} = \frac{F^2}{8} \left\langle (D_{\mu}\Sigma) \left(D^{\mu}\Sigma \right)^{\dagger} + \chi\Sigma^{\dagger} + \Sigma\chi^{\dagger} \right\rangle + \frac{H_0}{2} \left(D_{\mu}\theta \right) \left(D^{\mu}\theta \right) + \frac{1}{2}m_{a,0}^2 a^2$$

ALP kinetic energy and mass

$$\chi = 2B_0 \left(s + ip \right) = 2B_0 m_q$$

$$\begin{split} iD_{\mu}\Sigma &= i\partial_{\mu}\Sigma + \left(QeA_{\mu} + l_{\mu}\right)\Sigma - \Sigma\left(QeA_{\mu} + r_{\mu}\right)\\ H_{0} &= \frac{f^{2}}{\left(2c_{GG} + \langle c^{a}\rangle\right)^{2}} \end{split} \text{ chiral ALP currents}$$

The ALP as a source

 π_0 , a and η_8 undergo both mass & kinetic mixing. As a consequence^{*},

• non-perturbative contribution to ALP mass (also for $m_{a,0} \neq 0$)

$$\begin{split} m_a^2 &= m_{a,0}^2 \left\{ 1 - \frac{F^2}{4f^2} \left[\Delta + H_0 \left(\langle c^a \rangle + 2c_{GG} \right)^2 + \frac{m_a^2}{2 \left(\tilde{m}_{\pi^0}^2 - m_{a,0}^2 \right)} \left(c_{uu}^a - c_{dd}^a \right)^2 \right] \right\} \\ &+ \left[c_{GG}^2 \frac{F^2 \, \tilde{m}_{\pi^0}^2}{2f^2} - \frac{F^2}{24f^2} \frac{\left(\left(c_{uu}^a + c_{dd}^a - 2c_{ss}^a \right) m_{a,0}^2 + 2c_{GG} \left(m_{a,0}^2 - \tilde{m}_{\pi^0}^2 \right) \right)^2}{\tilde{m}_{\eta_8}^2 - m_{a,0}^2} \,, \end{split}$$

[Bardeen et al. (1978); Shifman et al. (1980); Di Veccia, Veneziano (1980)]

The ALP as a source

 π_0 , a and η_8 undergo both mass & kinetic mixing. As a consequence^{*},

• non-perturbative contribution to ALP mass (also for $m_{a,0} \neq 0$)

$$\begin{split} m_a^2 &= m_{a,0}^2 \left\{ 1 - \frac{F^2}{4f^2} \left[\Delta + H_0 \left(\langle c^a \rangle + 2c_{GG} \right)^2 + \frac{m_a^2}{2 \left(\tilde{m}_{\pi^0}^2 - m_{a,0}^2 \right)} \left(c_{uu}^a - c_{dd}^a \right)^2 \right] \right\} \\ &+ \left[c_{GG}^2 \frac{F^2 \tilde{m}_{\pi^0}^2}{2f^2} - \frac{F^2}{24f^2} \frac{\left(\left(c_{uu}^a + c_{dd}^a - 2c_{ss}^a \right) m_{a,0}^2 + 2c_{GG} \left(m_{a,0}^2 - \tilde{m}_{\pi^0}^2 \right) \right)^2}{\tilde{m}_{\eta_8}^2 - m_{a,0}^2} \right], \end{split}$$

[Bardeen et al. (1978); Shifman et al. (1980); Di Veccia, Veneziano (1980)]

• Field redefinitions needed to work with physical fields:

$$\begin{pmatrix} \pi_{0} \\ \eta_{8} \\ a \end{pmatrix} = \mathbf{R} \begin{pmatrix} \pi_{0,\text{phys}} \\ \eta_{8,\text{phys}} \\ a_{\text{phys}} \end{pmatrix}, \qquad \mathbf{R} = \begin{pmatrix} 1 & 0 & \frac{f_{\pi}}{f} \theta_{\pi_{0}a} \\ 0 & 1 & \frac{f_{\pi}}{f} \theta_{\eta_{8}a} \\ \frac{f_{\pi}}{f} \theta_{a\pi_{0}} & \frac{f_{\pi}}{f} \theta_{a\eta_{8}} & 1 \end{pmatrix} + \mathcal{O} \left(\frac{f_{\pi}^{2}}{f^{2}} \right)$$
$$\theta_{\pi^{0}a} = -\frac{M_{13}^{2} - m_{a,0}^{2} Z_{13}}{\tilde{m}_{\pi^{0}}^{2} - m_{a,0}^{2}} = \frac{F}{f} \frac{(\hat{c}_{uu}^{a} - \hat{c}_{dd}^{a}) m_{a,0}^{2} - 2c_{GG} (\kappa_{u} - \kappa_{d}) \tilde{m}_{\pi^{0}}^{2}}{2\sqrt{2} (\tilde{m}_{\pi^{0}}^{2} - m_{a,0}^{2})} \qquad \kappa_{q} \text{ dependence must drop in physical amplitudes!}$$

*all expressions in the isospin-conserving limit $m_u = m_d$

June 2024 || Capri

QCD chiral Lagrangian at O(p⁴)

Gasser & Leutwyler constructed the O(p⁴) QCD chiral Lagrangian in 1985, under the assumption $\theta = \langle a_{\mu} \rangle = \langle v_{\mu} \rangle = 0$.

With an ALP, these assumptions no longer hold: need to extend the basis including operators containing θ , $\langle a_{\mu} \rangle$ in the invariant combination $D_{\mu}\theta$!

QCD chiral Lagrangian at O(p⁴)

Claudia Cornella || JGU Mainz

To build the chiral Lagrangian for non-leptonic weak decays, start from the $\Delta S = 1$ WET Lagrangian and classify its operators in reps of G_{χ} . [see e.g. Pich (1985), (1990)]

Neglecting em penguins, one has operators transforming as (8_L, 1_R) or (27_L, 1_R) of G_{χ} . Their chiral representation is:

$$\begin{split} \mathcal{L}_{\text{weak}}^{(p^2)} &= \frac{F^4}{4} \left[G_8 \left\langle \lambda_+ L_\mu L^\mu \right\rangle + G_8' \left\langle \lambda_+ S \right\rangle \right] + \left(G_{27}^{1/2} \mathcal{O}_{27}^{1/2} + G_{27}^{3/2} \mathcal{O}_{27}^{3/2} \right) + \text{h.c.} \right] \\ &\qquad \mathcal{O}_{27}^{1/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu + 2L_{\mu 32} L_{22}^\mu - 3L_{\mu 32} L_{33}^\mu, \\ &\qquad \mathcal{O}_{27}^{3/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu - L_{\mu 32} L_{22}^\mu. \end{split}$$

• proportional to Fermi constant: $G_i = -\frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} g_i$

•
$$\lambda_{+} = 1/2 (\lambda_{6} + i \lambda_{7})$$
 selects $s \to d$ transitions

- L_{μ} , S represent the currents $\bar{q}_L \gamma_{\mu} q_L$ and $m_q (\bar{q}_L q_R + \bar{q}_R q_L)$
- "weak mass term" $\langle \lambda_+ S \rangle$ unobservable in the SM

[Bernard, Draper, Soni, Politzer, Wise (1985); Crewther (1986); Leurer (1988)]

June 2024 || Capri

To build the chiral Lagrangian for non-leptonic weak decays, start from the $\Delta S = 1$ WET Lagrangian and classify its operators in reps of G_{χ} . [see e.g. Pich (1985), (1990)]

Neglecting em penguins, one has operators transforming as $(8_L, 1_R)$ or $(27_L, 1_R)$ of G_{χ} . Their chiral representation is:

$$\mathcal{L}_{\text{weak}}^{(p^2)} = \frac{F^4}{4} \begin{bmatrix} G_8 \langle \lambda_+ L_\mu L^\mu \rangle + G_8' \langle \lambda_+ S \rangle \\ + G_8^\theta (D_\mu \theta) \langle \lambda_+ L^\mu \rangle \\ \mathcal{O}_{27}^{1/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu + 2L_{\mu 32} L_{22}^\mu - 3L_{\mu 32} L_{33}^\mu, \\ \mathcal{O}_{27}^{3/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu - L_{\mu 32} L_{22}^\mu. \end{bmatrix}$$

And with the ALP? • weak mass term is no longer unobservable

• new octet operator $\propto D_{\mu}\theta$!

To build the chiral Lagrangian for non-leptonic weak decays, start from the $\Delta S = 1$ WET Lagrangian and classify its operators in reps of G_{χ} . [see e.g. Pich (1985), (1990)]

Neglecting em penguins, one has operators transforming as $(8_L, 1_R)$ or $(27_L, 1_R)$ of G_{χ} . Their chiral representation is:

$$\mathcal{L}_{\text{weak}}^{(p^2)} = \frac{F^4}{4} \left[G_8 \left\langle \lambda_+ L_\mu L^\mu \right\rangle + G_8' \left\langle \lambda_+ S \right\rangle \right] + \left(G_{27}^{1/2} \mathcal{O}_{27}^{1/2} + G_{27}^{3/2} \mathcal{O}_{27}^{3/2} \right) + \text{h.c.} \right] \\ + G_8^\theta \left(D_\mu \theta \right) \left\langle \lambda_+ L^\mu \right\rangle \qquad \qquad \mathcal{O}_{27}^{1/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu + 2L_{\mu 32} L_{22}^\mu - 3L_{\mu 32} L_{33}^\mu, \\ \mathcal{O}_{27}^{3/2} = L_{\mu 32} L_{11}^\mu + L_{\mu 31} L_{12}^\mu - L_{\mu 32} L_{22}^\mu.$$

• from
$$K \to \pi \pi$$
: $g_8 = 3.61 \pm 0.28$ octet s
 $g_{27}^{1/2} \approx 0.033 \pm 0.003$ $\Delta I =$
 $g_{27}^{3/2} \approx 0.165 \pm 0.016$

octet strongly enhanced: $\Delta I = 1/2$ selection rule

• g_8^{θ} , g_8' : don't enter processes without ALP, hence **unknown**

 $G_i = -\frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} g_i$

Interpreting the new octet operator

The new octet operator is the chiral representation of

It accounts for the gluon-induced interactions of the ALP with FCNCs:

Formally a two-loop effect, but can be enhanced at low energies:

$$c_{\gamma\gamma}^{\text{eff}} \approx c_{\gamma\gamma} - (1.92 \pm 0.04) c_{GG}$$

[Villadoro et. al (2016)]

Because of the large enhancement of the octet with respect to the 27plet, we **only** include **octet** operators at O(p⁴).

Started from the basis of **Ecker, Kambor & Wyler** (1993) obtained from the redundant basis of Kambor, Missimer, Wyler (1989) via eoms, Cayley-Hamilton, IBP.

- only 19 out of 37 ops. are needed because $F_{\mu\nu}^{L} = \partial_{\mu}l_{\nu} - \partial_{\mu}l_{\mu} - i[l_{\mu}, l_{\nu}] \sim \partial_{\mu}\partial_{\nu}a - \partial_{\nu}\partial_{\mu}a = 0$ (same for $F_{\mu\nu}^{R}$)
- ...but the Ecker basis is derived for $\theta = \langle a_{\mu} \rangle = 0$.

	1	1		
	i	W^8_i	Z_i	Z'_i
	1	$\langle \lambda_6 L^2 L^2 \rangle$	2	0
	2	$\langle \lambda_6 L_\mu L^2 L^\mu \rangle$	$-\frac{1}{2}$	0
	3	$\left<\lambda_6 L_\mu L_\nu\right> \left< L^\mu L^\nu\right>$	0	0
	4	$\left< \lambda_6 L_\mu \right> \left< L^\mu L^2 \right>$	1	0
	5	$\langle \lambda_6 \{S, L^2\} \rangle$	$\frac{3}{2}$	$\frac{3}{4}$
:	6	$\left< \lambda_6 L_\mu \right> \left< S L^\mu \right>$	$-\frac{1}{4}$	0
	7	$\left< \lambda_6 S \right> \left< L^2 \right>$	$-\frac{9}{8}$	$\frac{1}{2}$
	8	$\left< \lambda_6 L^2 \right> \left< S \right>$	$-\frac{1}{2}$	0
	9	$i\left<\lambda_6[P,L^2]\right>$	$\frac{3}{4}$	$-\frac{3}{4}$
	10	$\langle \lambda_6 S^2 \rangle$	$\frac{2}{3}$	$\frac{5}{12}$
	11	$\langle \lambda_6 S \rangle \langle S \rangle$	$-\frac{13}{18}$	$\frac{11}{18}$
	12	$-\left<\lambda_6P^2\right>$	$-\frac{5}{12}$	$\frac{5}{12}$
	13	$-\left\langle \lambda_{6}P ight angle \left\langle P ight angle$	0	0
	19	$\left<\lambda_{6}\left[l_{\mu},\left[L^{2},L^{\mu} ight] ight>$	$-\frac{5}{4}$	0
	20	$\frac{i}{2}\left\langle \lambda_{6}\left[l_{\mu},\left\{ L_{\nu},W^{\mu u} ight\} ight] ight angle$	$\frac{3}{4}$	0
	21	$-\left\langle \lambda_{6}\left[l_{\mu},\left[S,L^{\mu} ight] ight] ight angle$	$\frac{5}{6}$	0
	23	$-i\left\langle \lambda_{6}\left[l_{\mu},\left\{ P,L^{\mu} ight\} ight] ight angle$	$\frac{5}{12}$	0
	24	$-i\left\langle \lambda_{6}\left[l_{\mu},L^{\mu} ight] ight angle \left\langle P ight angle$	0	0
	28	$i\epsilon_{\mu\nu\rho\sigma}\left\langle\lambda_{6}L^{\mu}\right\rangle\left\langle L^{\nu}L^{\rho}L^{\sigma}\right\rangle$	0	0

We find that the **extension** to general case requires 9 additional operators!

i	$W_i^{ heta8}$	$Z_i^{ heta}$	$Z_i'^{ heta}$	$Z_i^{ heta heta}$
1	$(D_{\mu}\theta)\langle\lambda_{6}\{L^{\mu},S\}\rangle$	(2.66)	$\frac{1}{2}$	(2.67)
2	$i(D_{\mu}\theta) \left\langle \lambda_{6}[L^{\mu},P] \right\rangle$	(2.66)	$\frac{1}{2}$	(2.67)
3	$i(D_{\mu}\theta) \left\langle \lambda_{6}[L_{\nu}, W^{\mu\nu}] \right\rangle$	$Z_3^{ heta}$	0	$Z_3^{ heta heta}$
4	$(D_{\mu}\theta)\langle\lambda_{6}L^{\mu}\rangle\langle S\rangle$	$-\frac{3}{4}$	0	$\frac{1}{2}$
5	$\left(\partial^{\mu}D_{\mu}\theta\right)\left\langle\lambda_{6}P\right\rangle$	$Z_5^{ heta}$	0	$Z_5^{ heta heta}$
6	$(D_{\mu}\theta)\langle\lambda_{6}\{L^{\mu},L^{2}\} angle$	_	0	_
7	$(D_{\mu}\theta)\left\langle \lambda_{6}L^{\mu} ight angle \left\langle L^{2} ight angle$	_	0	_
8	$(D_{\mu}\theta)\langle\lambda_{6}L_{\nu}\rangle\langle L^{\mu}L^{\nu}\rangle$	—	0	_
9	$i\epsilon_{\mu\nu\rho\sigma}(D^{\mu}\theta)\left\langle\lambda_{6}L^{\nu}L^{\rho}L^{\sigma}\right\rangle$	_	0	_

[CC, Galda, Neubert, Wyler (2023)]

$$\begin{bmatrix} \text{Ecker et. al (1993)} & [\text{CC, Galda, Neubert, Wyler (2023)} \end{bmatrix}$$

$$\mathcal{L}_{\text{weak}}^{(p^4)} = \frac{G_8 F^2}{2} \left(\sum_{i \in \mathcal{S}} N_i W_i^8 + \sum_{i=1}^9 N_i^\theta W_i^{\theta 8} \right)$$

$$\mathcal{S} = \{1, \dots, 13, 19, 20, 21, 23, 24, 28\}$$
weak LECs Anomalous dimensions
$$N_i = N_{i,r}(\mu) + \lambda \left(Z_i + \frac{G'_8}{G_8} Z'_i \right); \text{ Ecker (1993)} \qquad i \in S,$$

...also practically unknown

$$N_i^{\theta} = \frac{N_{i,r}^{\theta}(\mu)}{N_i} + \lambda \left(Z_i^{\theta} + \frac{G_8'}{G_8} Z_i'^{\theta} + \frac{G_8^{\theta}}{G_8} Z_i^{\theta\theta} \right); \qquad i = 1, \dots, 9.$$

unknown

we determined^{*} them requiring poles cancellation in $K \rightarrow \pi a$

On the weak mass term

Without external sources, the weak mass term $\mathcal{L}_{\text{weak}}^{(p^2)}\Big|_{G'_8} = \frac{F^4}{4}G'_8\langle\lambda_+S\rangle$

can be removed with the redefinition $\Sigma \to \Sigma' = g_L \Sigma g_R^{\dagger}$

$$g_L = 1 + i\alpha_L \qquad \alpha_L = G'_8 F^2 \left(\frac{m_s + m_d}{m_s - m_d} + \frac{m_s - m_d}{m_s + m_d}\right) \lambda_7$$
$$g_R = 1 + i\alpha_R \qquad \alpha_R = G'_8 F^2 \left(\frac{m_s + m_d}{m_s - m_d} - \frac{m_s - m_d}{m_s + m_d}\right) \lambda_7$$

On the weak mass term

Without external sources, the weak mass term $\mathcal{L}_{\text{weak}}^{(p^2)}\Big|_{G'_8} = \frac{F^4}{4}G'_8\langle\lambda_+S\rangle$

can be removed with the redefinition $\Sigma \to \Sigma' = g_L \Sigma g_R^{\dagger}$

$$g_L = 1 + i\alpha_L \qquad \alpha_L = G'_8 F^2 \left(\frac{m_s + m_d}{m_s - m_d} + \frac{m_s - m_d}{m_s + m_d}\right) \lambda_7$$
$$g_R = 1 + i\alpha_R \qquad \alpha_R = G'_8 F^2 \left(\frac{m_s + m_d}{m_s - m_d} - \frac{m_s - m_d}{m_s + m_d}\right) \lambda_7$$

With the ALP, the redefinition leaves a remnant:

$$\mathcal{L}^{(p^2)}\Big|_{G'_8} = \frac{F^2}{4} \langle [i\alpha_L, l_\mu] L^\mu + [i\alpha_R, r_\mu] R^\mu \rangle$$
$$\propto \frac{\partial_\mu a}{f} \left[\left([k_Q]_{ss} - [k_Q]_{dd} \right) \lambda_6 + \operatorname{Re} [k_Q]_{sd} \left(\sqrt{3} \lambda_8 - \lambda_3 \right) \right]$$

vanishes for flavor universal ALP!

We use the weak mass term in its transformed form to get rid of tadpoles at O(p²). Important: need to perform the redefinition also in the QCD O(p⁴) Lagrangian!

June 2024 || Capri

We work to first order in 1/f and G_F .

Depending on the origin of the $s \rightarrow d$ transition, distinguish:

"direct" contribution:

$$\mathcal{A} = \mathcal{A}^{\mathrm{FV}} + \mathcal{A}^{\mathrm{FC}}$$

"indirect" contribution: flavor-violating ALP coupling to s,d G_F x flavor-conserving ALP couplings

(neglect contributions with both)

We work to first order in 1/f and G_F .

Depending on the origin of the $s \rightarrow d$ transition, distinguish:

We work to first order in 1/f and G_F .

Depending on the origin of the $s \rightarrow d$ transition, distinguish:

We work to first order in 1/f and G_F .

Depending on the origin of the $s \rightarrow d$ transition, distinguish:

 $\begin{array}{lll} \text{``direct'' contribution:} & \text{``indirect'' contribution:} \\ \text{flavor-violating ALP coupling to s,d} & G_{\rm F} \, x \, {\rm flavor-conserving ALP couplings} \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A} = \mathcal{A}^{\rm FV} + \mathcal{A}^{\rm FC} & (\text{neglect contributions with both}) \\ & \mathcal{A}^{\rm FC} = \sum_{c_{\rm ALP}, G} \frac{G F_{\pi}^2 m_K^2 c_{\rm ALP}}{2f} \mathcal{A}^{G, c_{\rm ALP}} \\ & G \in \{G_8, G_8^{\theta}, G_8^{\prime}, G_{27}^{\prime}, G_{27}^{3/2}\} \\ & c_{\rm ALP} \in \{\tilde{c}_{GG}, c_{uu}^a, (c_{dd}^a + c_{ss}^a), (c_{dd}^a - c_{ss}^a), (c_{dd}^{\psi} - c_{ss}^{\psi})\} \\ \end{array} \right\}$

 $\bar{d}\gamma^{\mu}d$ and $\bar{s}\gamma^{\mu}s$ are not individually conserved in presence of weak interactions \rightarrow flavor-diagonal ALP vector couplings are observable in FCNCs!

 $K \rightarrow \pi a \text{ at O(p^2)}$

- the κ_q dependence cancels exactly
- Isospin-breaking corrections are below 1%, it's safe to neglect them at NLO


```
K \rightarrow \pi a \text{ at O(p4)}
```



```
K \rightarrow \pi a \text{ at O(p4)}
```


The result satisfies two important **consistency checks**:

- again, the κ_q dependence cancels
- UV divergences cancel.

As a byproduct, the explicit μ dependence of the remaining (finite) result is cancelled by the μ dependence of the various LECs.

The result satisfies two important **consistency checks**:

- again, the κ_q dependence cancels
- UV divergences cancel.

As a byproduct, the explicit μ dependence of the remaining (finite) result is cancelled by the μ dependence of the various LECs.

Consistency with the literature - poles with FV ALP couplings canceled by the QCD counterterms given in the literature

- for $\theta = \langle a_{\mu} \rangle = 0$ and $G'_8 = 0$, the poles of the indirect contribution are canceled by the weak CTs of Ecker

The result satisfies two important **consistency checks**:

- again, the κ_q dependence cancels
- UV divergences cancel.

As a byproduct, the explicit μ dependence of the remaining (finite) result is cancelled by the μ dependence of the various LECs.

Consistency with the literature - poles with FV ALP couplings canceled by the QCD counterterms given in the literature

- for $\theta = \langle a_{\mu} \rangle = 0$ and $G'_8 = 0$, the poles of the indirect contribution are canceled by the weak CTs of Ecker

...and some new information: ca

cancellation of the remaining poles $\propto G_8 \tilde{c}_{GG}$, $G_8^{\theta} \tilde{c}_{GG}$ & G_8' gives conditions on the anomalous dims of $W_{1-3}^{\theta 8}$

The result satisfies two important **consistency checks**:

- again, the κ_q dependence cancels
- UV divergences cancel.

As a byproduct, the explicit μ dependence of the remaining (finite) result is cancelled by the μ dependence of the various LECs.

Consistency with the literature - poles with FV ALP couplings canceled by the QCD counterterms given in the literature

- for $\theta = \langle a_{\mu} \rangle = 0$ and $G'_8 = 0$, the poles of the indirect contribution are canceled by the weak CTs of Ecker

...and some new information: cancellation of the remaining poles $\propto G_8 \, \tilde{c}_{GG}$, $G_8^{\theta} \, \tilde{c}_{GG}$ & G_8' gives conditions on the anomalous dims of $W_{1-3}^{\theta 8}$

Surprisingly, the amplitude has **no absorptive part**, in contrast with $K_S \rightarrow \pi^+ \pi^-$, where a strong rescattering phase is generated at NLO.

June 2024 || Capri

$$\mathcal{A}^{\rm FV} = -(m_{K^-}^2 - m_{\pi^-}^2) \, \frac{[k_d + k_D]_{12}}{2f} \, F_0^{K \to \pi} (q^2 = m_a^2)$$

Lots of unknown (mostly weak) LECs appear in the amplitude

 \rightarrow limitation on the predictive power of our results

The best we can do is to assume that at "some" scale μ_0 the unknown LECs are small, so that they can be neglected.

On theory grounds, one expects a reasonable choice for μ_0 to be the scale of chiral symmetry breaking, $\mu_{\chi} \approx 1.6$ GeV, where the LECs are free of large logs.

Lots of unknown (mostly weak) LEC

 \rightarrow limitation on the predictive pow

The best we can do is to assume tha small, so that they can be neglected

On theory grounds, one expects a rechiral symmetry breaking, $\mu_{\gamma} \approx 1.6$

Works for QCD with $\mu_0 \approx 1.4 \text{ GeV!}$

Lots of unknown (mostly weak) LEC

 \rightarrow limitation on the predictive pow

The best we can do is to assume tha small, so that they can be neglected

On theory grounds, one expects a rechiral symmetry breaking, $\mu_{\gamma} \approx 1.6$

Works for QCD with $\mu_0 \approx 1.4$ GeV!

 \rightarrow we assume the **unknown LECs** to have a **similar** behaviour:

- set them to 0 at $\mu_0 \approx 1.4~{\rm GeV}$
- vary μ_0 by $\sqrt{2}$ in both directions (1 2 GeV) to estimate model uncertainty

Weak dependence from the alp mass, except for $m_a \approx m_\pi$

June 2024 || Capri

Bounds on ALP couplings

Experimental bound(s) set by NA62:

[NA62 2021]

 $\begin{aligned} \mathcal{B}(K^+ \to \pi^+ X) < (3-6) \times 10^{-11} & \text{@90\% CL} \quad m_X \in [0, 110] \text{ MeV} \\ \mathcal{B}(K^+ \to \pi^+ X) < 1 \times 10^{-11} & \text{@90\% CL} \quad m_X \in [160, 260] \text{ MeV} \end{aligned}$

Switching on one coupling at a time, they can be translated into a lower bound on the effective scale $\Lambda_i^{\text{eff}} = f/|c_i|$.

The probed NP scales range from few to tens of TeV.

Strong bounds on flavor-changing ALP couplings call for a flavor symmetry in the UV!

 $\Lambda_{c_i}^{\text{eff}}$ [TeV] $m_a = 0 \mid m_a = 200 \,\mathrm{MeV}$ $c_i(\mu_{\chi})$ $2.9 \cdot 10^{8}$ $[k_D + k_d]_{12}$ $3.0 \cdot 10^{8}$ $\tilde{c}_{GG}^{(*)}$ 43 39 c^a_{uu} 1.52.0 $c^a_{dd} + c^a_{ss}$ 9 15 $c_{dd}^{a} - c_{ss}^{a}^{(**)}$ 8 4 $c_{dd}^v - c_{ss}^{v \ (**)}$ 2322

(*) assuming $g_{8\theta} = 0$

Consider a flavor-universal ALP at $\Lambda = 4\pi f$.

Reminder: flavor violating ALP couplings are anyway generated a at low energies via RGE!

Consider a flavor-universal ALP at $\Lambda = 4\pi f$.

Reminder: flavor violating ALP couplings are anyway generated a at low energies via RGE!

	$\Lambda_{c_i}^{\mathrm{eff}}$ [TeV]	
$c_i(\Lambda)$	$m_a = 0$	$m_a = 200 \mathrm{MeV}$
$\tilde{c}_{GG}(\Lambda)$	49	97
$ ilde{c}_{WW}(\Lambda)$	2.6	6
$ ilde{c}_{BB}(\Lambda)$	0.02	0.04
$ ilde{c}_u(\Lambda)$	$1.9\cdot 10^3$	$4.2\cdot 10^3$
$\widetilde{c}_d(\Lambda)$	51	78
(assuming $G_8^{ heta}=0$, $f=1$ TeV)		

Consider a flavor-universal ALP at $\Lambda = 4\pi f$.

Reminder: flavor violating ALP couplings are anyway generated $\frac{a_{--}}{a_{--}}$ at low energies via RGE!

	$\Lambda_{c_i}^{\text{eff}} [\text{TeV}]$	
$c_i(\Lambda)$	$m_a = 0$	$m_a = 200 \mathrm{MeV}$
$\tilde{c}_{GG}(\Lambda)$	49	97
$\tilde{c}_{WW}(\Lambda)$	2.6	6
$\tilde{c}_{BB}(\Lambda)$	0.02	0.04
$\tilde{c}_u(\Lambda)$	$1.9 \cdot 10^{3}$	$4.2 \cdot 10^{3}$
$ ilde{c}_d(\Lambda)$	51	78
(assuming $G_8^ heta=0$, $f=1$ TeV)		

This "direct" contribution dominates the bound on \tilde{c}_{WW} , \tilde{c}_{BB} , \tilde{c}_{u} . NLO correction is small & precise... \Rightarrow NLO bound is similar to the LO one!

Consider a flavor-universal ALP at $\Lambda = 4\pi f$.

Reminder: flavor violating ALP couplings are anyway generated a at low energies via RGE!

	$\Lambda_{c_i}^{\mathrm{eff}} \ [\mathrm{TeV}]$	
$c_i(\Lambda)$	$m_a = 0$	$m_a = 200 \mathrm{MeV}$
$\tilde{c}_{GG}(\Lambda)$	49	97
$ ilde{c}_{WW}(\Lambda)$	2.6	6
$\tilde{c}_{BB}(\Lambda)$	0.02	0.04
$\tilde{c}_u(\Lambda)$	$1.9 \cdot 10^{3}$	$4.2 \cdot 10^{3}$
$ ilde{c}_d(\Lambda)$	51	78
(assuming $G_8^ heta=0$, $f=1$ TeV)		

This "direct" contribution dominates the bound on \tilde{c}_{WW} , \tilde{c}_{BB} , \tilde{c}_{u} . NLO correction is small & precise... \Rightarrow NLO bound is similar to the LO one!

The bound on \tilde{c}_{GG} , \tilde{c}_d instead comes from the **"indirect" contribution**, which carries a largish theoretical uncertainty....

 \Rightarrow NLO bound 30-40% weaker than LO estimate

Consider a flavor-universal ALP at $\Lambda = 4\pi f$.

Reminder: flavor violating ALP couplings are anyway generated a_{t} at low energies via RGE!

	$\Lambda_{c_i}^{\mathrm{eff}} \ [\mathrm{TeV}]$	
$c_i(\Lambda)$	$m_a = 0$	$m_a = 200 \mathrm{MeV}$
$\tilde{c}_{GG}(\Lambda)$	49	97
$\tilde{c}_{WW}(\Lambda)$	2.6	6
$\tilde{c}_{BB}(\Lambda)$	0.02	0.04
$\tilde{c}_u(\Lambda)$	$1.9 \cdot 10^{3}$	$4.2 \cdot 10^{3}$
$ ilde{c}_d(\Lambda)$	51	78
(assuming $G_8^ heta=0$, $f=1$ TeV)		

This "direct" contribution dominates the bound on \tilde{c}_{WW} , \tilde{c}_{BB} , \tilde{c}_{u} . NLO correction is small & precise... \Rightarrow NLO bound is similar to the LO one!

The bound on \tilde{c}_{GG} , \tilde{c}_d instead comes from the **"indirect" contribution**, which carries a largish theoretical uncertainty....

 \Rightarrow NLO bound 30-40% weaker than LO estimate

Still, $K \rightarrow \pi a$ remains the strongest particle-physics probe for $m_a \lesssim 300 \text{ MeV}$!

Bounds on ALP couplings to nucleons

 $K \rightarrow \pi a$ can be used to constrain the ALP couplings to nucleons.

Competes with several constraints from non-accelerator and astrophysical probes!

Bounds on ALP couplings to nucleons

 $K \rightarrow \pi a$ can be used to constrain the ALP couplings to nucleons.

Competes with several constraints from non-accelerator and astrophysical probes!

Conclusions

Weak meson decays are some of the most powerful probes of ALPs.

 $K \to \pi a$ is a good example, and I discussed the associated challenges! With this rigorous framework at hand, we aim to study other modes, e.g. $K_0 \to \pi_0 a$ and $\pi^- \to e^- \bar{\nu} a$.

Open Questions and Future Directions in Flavour Physics

Back-up

Contribution proportional to G_8 (for $m_a = 0$):

$$i\mathcal{A}_{\rm LO}^{G_8} = \frac{G_8 F_\pi^2 m_K^2}{2f} \left[\left(1.88 - 0.88 \,\varepsilon^{(2)} \right) \tilde{c}_{GG} - \left(0.02 - 0.44 \,\varepsilon^{(2)} \right) c_{uu}^a - \left(0.48 - 0.44 \,\varepsilon^{(2)} \right) \left(c_{dd}^a + c_{ss}^a \right) + 0.54 \left(c_{dd}^v - c_{ss}^v \right) \right],$$

$$\begin{split} i\mathcal{A}_{\rm NLO}^{G_8} &= \frac{G_8 F_\pi^2 \, m_K^2}{2f} \left[\left(-0.25 \pm 0.43 \pm 0.61 \right) \tilde{c}_{GG} + \left(5.21 \pm 1.03 \pm 6.52 \right) \cdot 10^{-3} \, c_{uu}^a \right. \\ & \left. + \left(0.06 \pm 0.11 \pm 0.16 \right) \left(c_{dd}^a + c_{ss}^a \right) - \left(0.27 \pm 0.10 \pm 0 \right) \left(c_{dd}^a - c_{ss}^a \right) \right. \\ & \left. + \left(0.24 \pm 0.23 \pm 0.18 \right) \left(c_{dd}^v - c_{ss}^v \right) \right], \end{split}$$

- Moderate NLO corrections with sizeable uncertainties due to O(15) unknown weak LECs + uncertainty of some of the "measured" LECs, especially $L_{7,r}$
- Crossed-out terms vanish for a flavor-universal ALP in the UV

Bounds on ALP couplings: dependence on f

Bounds on the Λ_i^{eff} depend logarithmically on f:

Bounds on ALP couplings: dependence on f

Bounds on the Λ_i^{eff} depend logarithmically on f:

Bounds on ALP couplings: dependence on $g_{8\theta}$

Bounds on ALP couplings: dependence on $g_{8\theta}$

