Future Directions in Spectroscopy Aanalysis (FDSA2024) Genoa, 2024-01-24

Lineshape of the f₀(980)

César Fernández Ramírez

Universidad Nacional de Educación a Distancia (UNED)

Outlook

Motivation

- Compact or molecule?
- Probably a mix. Interest on the dominant contribution
- PDG'22: Section 64. Scalar mesons below 1 GeV

Effective range approach to dispersive data analyses

Neural networks applied to the $f_0(980)$

• Continuation of JPAC, PRD 105 (2022) L091501

Takeaways

Standard approach

Take an amplitude, it has parameters to be determined by data Fit data Extract parameters and get pole positions and compute uncertainties Assess the probability that those data were generated by your amplitude One can do this with different amplitudes that represent different underlying dynamics Compare amplitudes? Compare dynamics?

"Data": S wave from dispersive data analysis $\pi\pi \to \pi\pi, K\overline{K}$

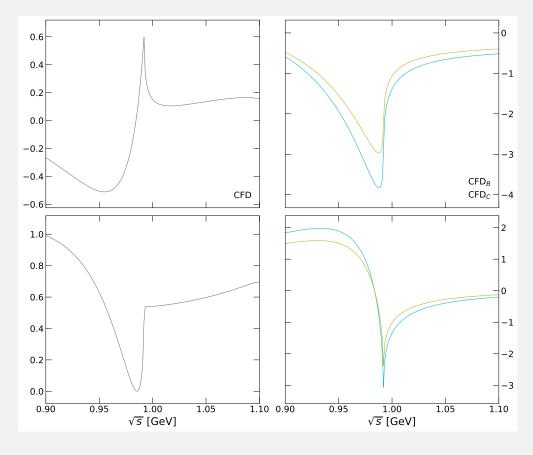
We take the S wave from the dispersive analysis in

 $(\pi\pi)$:Garcia-Martin, et al., PRD 83 (2011) 074004 (π K): Peláez, Rodas, Phys.Rept. 969 (2022) 1

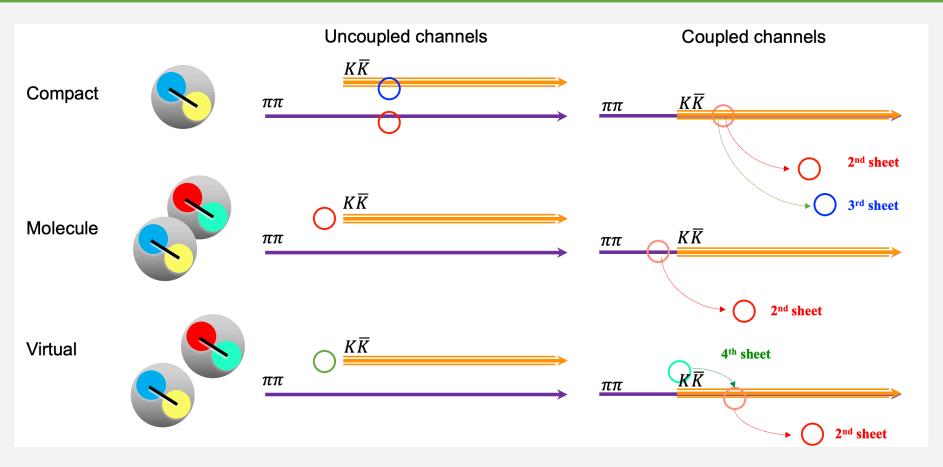
as "data".

Two solutions base on incompatible datasets for the $\pi\pi$ ->KKbar "data"

B: Longacre *et al.*, PLB 177 (1996) 223 C: Cohen, et al. PRD22 (1980) 2595 Etkin *et al.*, PRD25 (1982) 1786



Interpretation: Morgan-Pennington criterion



Model: Two-channel effective range

$$S_{ij}(s) = \delta_{ij} + 2i\sqrt{k_i k_j} T_{ij}(s)$$

$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

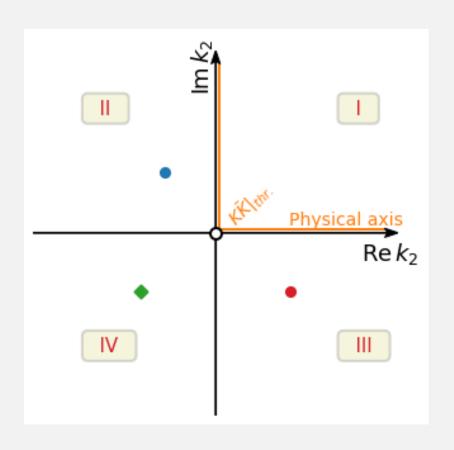
$$k_i = \sqrt{s - s_i}$$

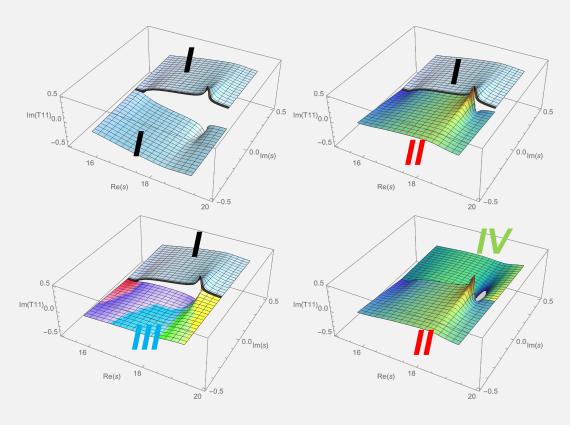
$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

See, e.g.

Frazer, Hendry, PR 134 (1964) B1307 JPAC, PRL 123 (2019) 092001

Riemann sheets structure





Uncertainties: Bootstrap

Associate a distribution to each experimental datapoint

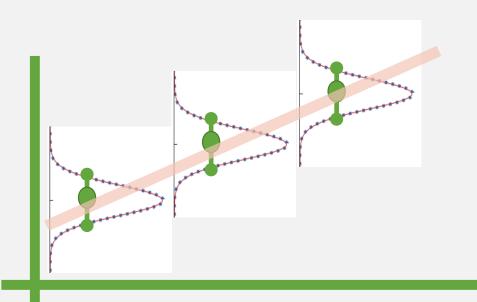
 Typically a Gaussian with mean and sigma from experiment

Monte Carlo

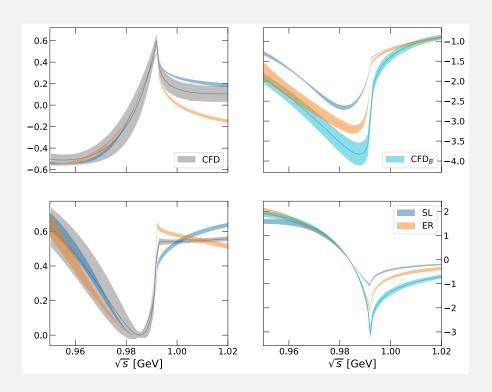
Generate pseudodata according to the chosen distribution

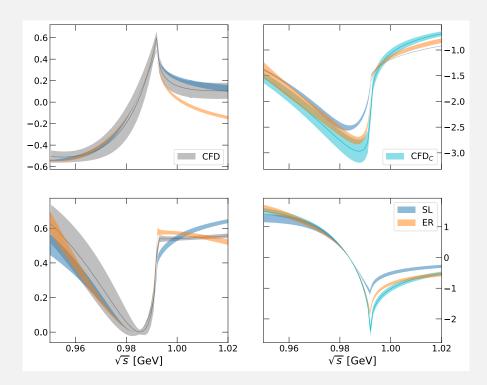
Run statistics on the pseudadtasets

• Compute distributions, mean, standard deviation, quantiles, ...

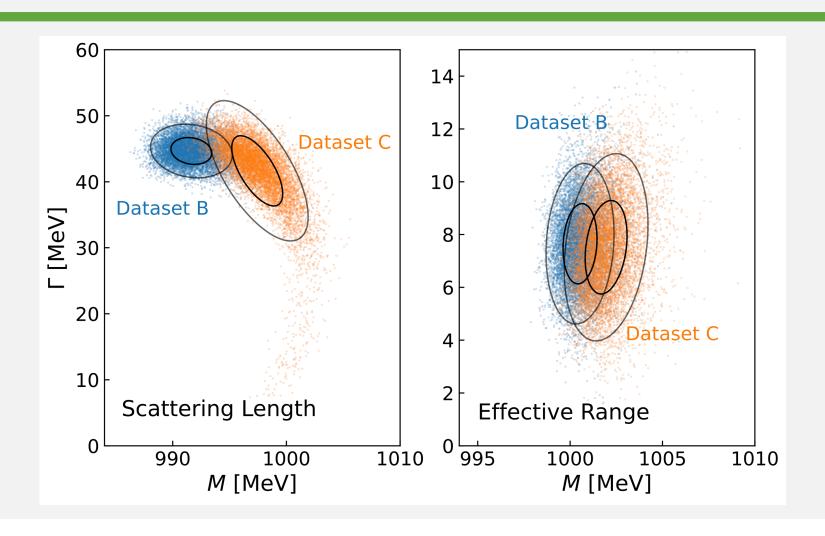


Fit results





Poles



Parameters

TABLE I. Summary of best fits and pole locations (s_p) in the complex s-plane.

Model	dataset B		dataset C	
	Scattering Length	Effective Range	Scattering Length	Effective Range
"	0		0	0
# params.	3	6	3	6
χ^2/dof	11.7	4.5	6.8	1.8
	0.17(5)	0.0/1.0\	0.0(1)	4.7(0)
μ_{11}	0.17(5)	2.9(1.0)	0.0(1)	4.7(6)
μ_{22}	-0.1290(4)	-1.5(2)	-0.1287(3)	-0.8(2)
μ_{12}	-0.379(7)	1.4(2)	-0.398(8)	0.8(1)
c_{11}	_	3.4(1.1)	_	5.2(7)
c_{22}	_	-1.4(2)	_	-0.7(3)
c_{12}	-	1.8(2)	_	1.3(2)
D	**	**	**	**
Riemann Sheet	II	II	II	II
$\sqrt{s_p}$ (MeV)	992(2) - i 22(1)	1000.5(9) - i 3.8(9)	997(2) - i 21(3)	$1002(1) - i \cdot 3.8(9)$
$M_p = \text{Re}\sqrt{s_p} \text{ (MeV)}$	992(2)	1000.5(9)	997(2)	1002(1)
$\Gamma_p = -2 \operatorname{Im} \sqrt{s_p} \text{ (MeV)}$	45(2)	7.6(1.5)	42(5)	7.5(1.8)

Can machine learning help us?

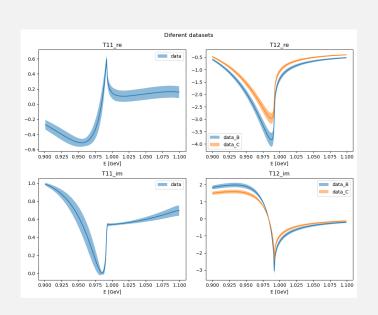
The question

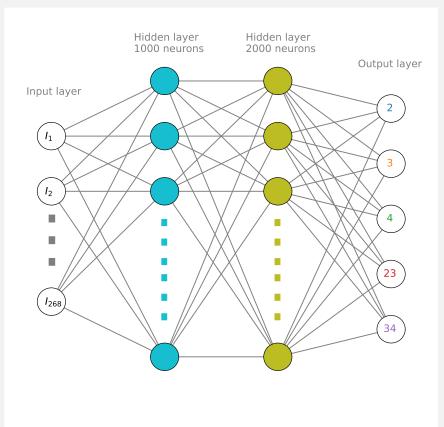
• Can we train a neural network to analyze a lineshape and get as a result what is the probability of each possible characterization?

First explorations of neural networks as classifiers for hadron spectroscopy

- Sombillo et al., PRD 102 (2020) 016024, 104 (2021) 036001
- JPAC, PRD 105 (2022) L091501, PPNP 127 (2022) 103981
- Zhang et al. Sci. Bull. (2023), 2301.05364

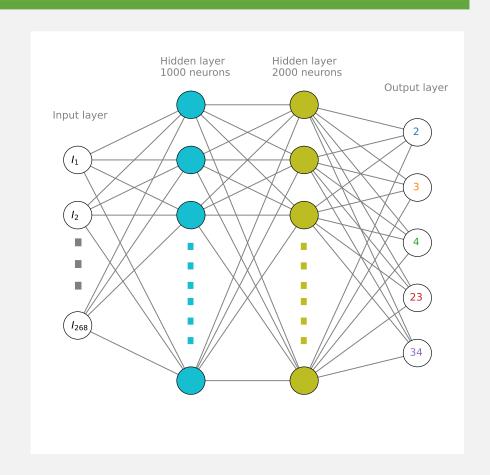
Holy Grail: ML as a tool for physics discovery





- Interpretation 1
- Interpretation 2
- Interpretation 3
- Interpretation 4
- Interpretation 5

- 1. Set the network architecture
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap



- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap

$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

Building the training set

10⁵ training curves

- Generated by randomly setting parameter values in a wide range
- Curves are computed at the "experimental" energies
- Can cleanup unphysical possibilities

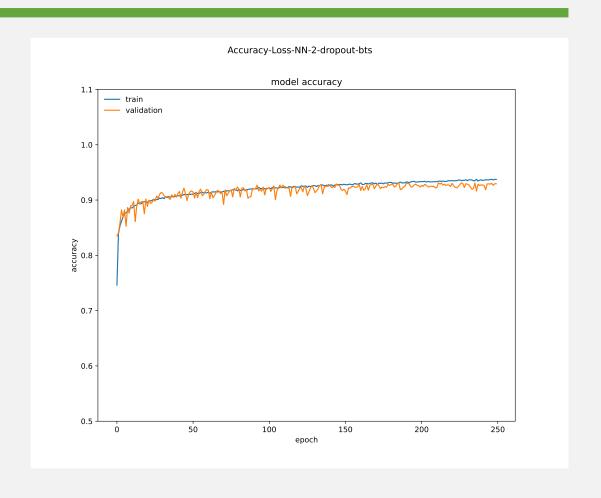
Gaussian noise

- Included to mimic uncertainties
- Compare "blurry" to "blurry"

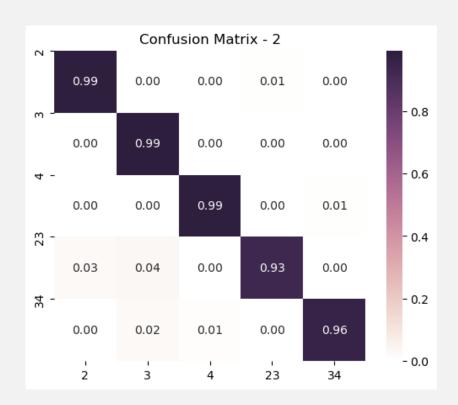
$$T_{ij}^{-1}(s) = M_{ij}(s) - ik_i \,\delta_{ij},$$

$$M_{ij}(s) = \mu_{ij} - c_{ij}s,$$

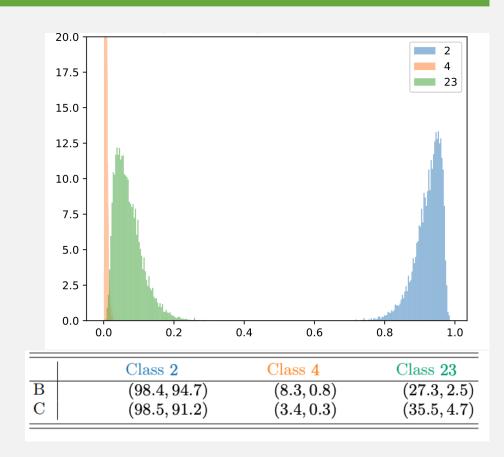
- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap



- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap



- 1. Set the network structure
- 2. Build the training set using the ER model
- 3. Train the network (there is feedback between points 1, 2, and 3)
- 4. Put the data through the network and get a result
- 5. Bootstrap



Takeaways

Data support the $f_0(980)$ molecular interpretation

Towards a data-driven interpretation of resonances

NN open new possibilities to address the question on the underlying nature of resonances

NN allows a true comparison among interpretations. Gain physics insight

NN is not a substitution of the canonical approach to analyzing data