



UNIVERSITÀ DEGLI STUDI DI MILANO



## Crystal experiment at CERN

Elisabetta Spadaro Norella University of Genova

on behalf of SELDOM team

24th January '24

5rd workshop on Future Directions in Spectroscopy Analysis (FDSA24) UniGe, Genova

## Outline

Fixed target experiment with bent crystals at CERN to measure EDM/MDM of charmed baryons

- Physics motivation
- Detector layout and schedule
- Beyond dipole moments:
   J/ψ photoproduction case

# **Physics Motivations**

## Dipole moments

- $\delta$  = Electric Dipole Moment (EDM)
- *μ* = Magnetic Dipole Moment (**MDM**)

Hamiltonian:

$$H = -\boldsymbol{\mu} \cdot \boldsymbol{B} - \boldsymbol{\delta} \cdot \boldsymbol{E}$$

Under T, P

 $d\mu_N \mathbf{S} \cdot \mathbf{E} \xrightarrow{T,P} - d\mu_N \mathbf{S} \cdot \mathbf{E}$ 

EDM violates T and P  $\Rightarrow$  via CPT, it violates CP

EDM  $\neq$  0  $\Rightarrow$  source of CPV beyond SM



## EDM of charm hadrons



J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501

$$\Lambda_c^+ = [ud]c \qquad \Xi_c^+ = [us]c$$

Charm baryons EDM not measured yet

- Short lifetime:  $\tau \sim 10^{-13}$  s  $c\tau \approx 100 \,\mu{\rm m}$
- Decay length

 $\gamma\approx 500 \quad \gamma c\tau\approx 5\,{\rm cm}$ 

EDM/MDM = measure precession in high intensity field

### MDM

The measurement of the baryon MDM provides experimental anchor points for low energy models of **strong interactions** 



## Channeling in bent crystals

For positive charged particles, bent crystals can be used to:



 $\Lambda_{c}^{+}$  signal topology

Average momentum of 1 TeV for channeled  $\Lambda_c^+$  baryons for bending angle  $\theta_c$  = 7 mrad



Momentum of  $\Lambda_c^+$  baryons



Momentum of daughter particles



## Fixed-target experiment layout

First bent crystal for secondary beam

Second bent crystal channeling charm hadrons (7 mrad of bending)

Target: W, 2cm

 $\Lambda_c \rightarrow pK\pi$  is reconstructed thanks to a **spectrometer** composed by warm/permanent magnet + tracking stations



## Location of double-crystal setup

#### LHCb scenario **IR3** scenario build a new experiment at IR3 place the fixed-target & crystal in front of LHCb Double-CRY1: 50µrad IR5 (CMS) **B1 B**2 crystal setup CRY2: 7000µrad IR4 (RF) IR6 (beam Cry2 + target extraction) Timeline: LS3 IR3 (momentum IR7 (betatron . collimation) collimation) SMOG-2: approved IR2 (ALICE, IR8 (LHCb, injection B1) injection B2)/ gas Gaseous source IR1 (ATLAS) targets Single-Crystal 1 CRY1: 150µrad Doublecrystal setup crystal setup CRY2: ~14000µrad CRY1: 100-175µrad S. Redaelli, PBC General WG, 02/12/2021

## Sensitivity to EDM/MDM



Dedicated experiment better than LHCb scenario by factor 2

+ higher flux  $\Rightarrow$  higher PoT &/or reduced data-taking time

## IR3 experiment' schedule

**Run 3** 2025 Phase 0: "Proof-of-Principle" (PoP) experiment

- asked for by LHCb & approved by LMC (LHC Machine Committee)
- To measure channeling at TeV energies scale
- ⇒ if successful

#### Phase 1:

setup to perform first physics measurements:

 Charm baryons EDM/MDM with O(10<sup>13</sup> PoT), τ EDM & other physics opportunities?

#### beyond

Run 4

2029

#### Phase 2:

setup to ultimate the physics measurements:

- EDM/MDM measurements with full sensitivity

**MoU** has been signed by CERN and contributing institutes;

**Collaboration for future experiment** will soon be formed & Letter of Intent is in preparation

## Other physics opportunities

#### Proposal of studying vector-meson photoproduction:

- very forward fixed-target (Pb target) experiment with η>5 can result in high cross-sections
- complementary to existing experiments  $\rightarrow$  independent measurements
- $\Rightarrow$  Main topic of the following

#### Study charm production cross section at very small angle

complementary kinematics with respect to SMOG2

#### From F. Martinez-Vidal at PBC-QCD link

| Kinematic variable  | > 15 mrad (~SMOG2)          | Ge 293K 16 mrad 10 cm     |
|---------------------|-----------------------------|---------------------------|
| Momentum (GeV)      | < 500                       | >800                      |
| Transverse momentum | > 0.5                       | < 1                       |
| Pseudorapidity*     | -4 to 0, central & backward | 1 to 3.5, very forward    |
| Momentum transfer Q | 20 to 115                   | ≈ 4                       |
| Bjorken-x           | Down to $\approx 10^{-3.5}$ | Down to $\approx 10^{-3}$ |
| Feyman-x            | Large negative              | Large positive            |

# Detector layout

## Spectrometer for IR3

#### Magnet

orbit correction dipole magnets at IR3

| Magnet | L [m] | B [T] |  |
|--------|-------|-------|--|
| MBW    | 3.4   | 1.4   |  |
| MCBW   | 1.7   | 1.1   |  |

#### **Tracking stations**

- Tiles of **VELOPix**: TDR  $55x55 \,\mu m^2$  pixel, pixel hit rate 600 MHz/cm<sup>2</sup>, 12  $\mu$ m hit resolution
- Roman Pots: ALFA Roman Pots



https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01 VELO module



#### ALFA Roman Pot



### Simulations

Based on DD4hep: gitlab repository IR3Detector

#### **Optimization of the detector design:**

- Trackers technology & positions
- Magnet acceptance

#### **Background discrimination**

- combinatorial & unchanneled Λ<sub>c</sub>
- peaking backgrounds from D<sup>+</sup> and D<sub>s</sub> decays ⇒ proposal of a RICH detector

#### Results

- Proton flux of 10<sup>6</sup>p/s (up to 10<sup>7</sup>p/s): rate is sustainable by VeloPix chip
  - Good acceptance (~50%), further increased with some design modifications
- m(Lc) resolution ~30 MeV

#### ⇒ Letter of Intent under preparation



### **RICH Detector**





# $J/\psi$ photoproduction

## Inclusive Vector Meson photoproduction

#### in collaboration with A. Pilloni

**Motivation** is to perform feasibility studies for:

- $J/\psi$  photoproduction cross-section at threshold  $\rightarrow$  understand role of open-charm thresholds
- search for pentaquarks in prompt production
   ⇒ improve upon recent GlueX results (J/ψ yield= 2270)
   [Phys. Rev. C 108, 025201]



Process characteristics:

- very forward production
- exclusive process: only  $J/\psi$  and p
- high cross-section due to high target Z
- high luminosity due to target Z

#### **Our experiment at IR3**

- $\Rightarrow$  covers a pseudorapidity range from 5 to 8
- $\Rightarrow$  hermetic detector
- $\Rightarrow$  ~10 nb, calculated with simulations
- $\Rightarrow$  about 10<sup>29</sup> cm<sup>2</sup>s<sup>-1</sup> with 10<sup>6</sup>p/s & 2 cm W target

### $J/\psi$ photoproduction

**Cross-section estimates** for pW and PbW at 7 TeV beam energy 1.

& Resolutions on reconstructed  $m(J/\psi p)$ 



3.  $J/\psi$  acceptance

a.

b.

2.

4. **Expected yields** 

### **Cross-section estimates**

Cross-section estimate with STARLight MC link

- 1. pW interactions. Beam energy = 7 TeV
- 2. PbW interactions. Beam energy = 7 TeV x Z
  - 1. **pW: σ= 42 nb,** y in range 3<y<8



 $\Rightarrow$  Dominant process is incoherent photon-p interaction, with photon emitted by target (proportional to Z)

#### 2. PbW: σ=1.89 mub, y in range 2<y<6.5



### **Cross-section estimates**

Cross-section estimate with STARLight MC link

- 1. pW interactions. Beam energy = 7 TeV
- 2. PbW interactions. Beam energy = 7 TeV x Z

#### Comparison with GlueX: cross-section in range 4.2<W<4.8 GeV

1. **pW: σ= 0.5 nb** 

**2. PbW: σ=72 nb,** y in 2<y<6.5





## Photoproduction kinematics

In order to measure the invariant mass resolution, we need to reconstruct:

- two muons  $\rightarrow p_{J/\psi} \sim 500 \text{ GeV}$
- deflected proton  $\rightarrow \theta_{p} < 250 \mu rad$  $[\theta_{J/\psi p}]$

$$m^{2}(J/\psi p) = m_{J/\psi}^{2} + m_{p}^{2} + 2(E_{p}E_{J/\psi} - |p_{p}||p_{J/\psi}|cos(\theta_{J/\psi p}))$$
Proton momentum
measurement is not required
$$p_{p,fin} = p_{p,in} - p_{J/\psi}$$
(under collinear photon
approximation)
$$p_{p,fin} = p_{p,fin} - p_{J/\psi}$$



### Invariant mass resolution

Track angles:

-  $\theta_p < 250 \mu rad$ -  $[\theta_{J/\psi p} < 2.5 m rad]$ 

#### Resolution

$$\sigma_{ heta}pprox \sqrt{2}\sigma_s/D=14~\mu{
m rad}$$
 with  $\sigma_s=10\mu m,~D=1m$ 

#### Detector

- Pixel stations before magnet:
  - Hit reso:  $\sigma_s = 55 \mu m / \sqrt{12} = 15 \mu m$
  - Multiple scattering <5 µm

#### Momentum:

$$\sigma_{\text{J/psi}} > \sim 500 \text{ GeV} \Rightarrow \sigma_p/p = \frac{2p}{0.3BLD} \sigma_s = 1.7\%$$
  
with  $BL = 1.9 \text{ Tm}$ 

#### Trackers + Muon stations

Invariant mass resolution estimated with parametric simulations (smearing mu momenta and mu, p angles)

 $\Rightarrow$ 



 $\sigma_{m(J/\psi p)} = rac{m(J/\psi p) - m(J/\psi p)_{true}}{m(J/\psi p)_{true}}$ Resolution on P\_ mass:

 $\sigma_{m(P_c)} = \sigma \cdot m(P_c) \sim 20 MeV$ 

### Muon detector

Technologies:

- Si strip detector: UT sensor of 10x10 cm<sup>2</sup>
  - pitch=180 $\mu$ m  $\rightarrow$   $\sigma$ =180/sqrt(12)= 52 $\mu$ m
- **MWPC: Gas mixture:** Ar:CF4:CO2 [ 0.6:0.1:0.3], 5mm
  - pad= 20x25mm<sup>2</sup>
  - chamber=  $48x20 \text{ cm}^2 \Rightarrow 24 \text{ x} 8 \text{ pads}$

Interleaved with **iron filters**, 90 cm thick (to be optimized)

#### Possible design solutions investigated:

- 1. First station of Si strip with area of  $40x20cm^2 + 3$  stations of MWPC
- 2. 4 stations of Si, with reduced area (about  $20x20 \text{ cm}^2$ , 4/5 tracker stations per layer)

 $\Rightarrow$  angular reso of 1 mrad

#### Elisabetta Spadaro Norella - Università di Genova

### Muon stations' occupancy



 $\Rightarrow$  If we want to go to 10<sup>7</sup> p/s, we need to build full Si sensors or optimize the filter length

### Veto exclusive events

Tag events which contain only 3 tracks: 1 proton and 2 muons

⇒ Necessary to build an hermetic detector, we are investigating:

- 1) Tracking stations below the beam pipe to enlarge acceptance in the forward region
- 2) Scintillator downstream at a distance of 100m, such as Hershel of LHCb [JINST 13 (2018) P04017]

**Inelastic interactions:** initial proton can interact with target and crystal after being produced ⇒ probability of having inelastic interaction with W and Si

$$egin{aligned} P_{inel} &= (1 - e^{-z_{target}/\lambda_W}) + (1 - e^{-z_{Cry}/\lambda_{Si}}) = 0.32 \ 1 - P_{inel} &= 0.68 \end{aligned}$$

 $\Rightarrow$  this factor needs to be multiplied by the acceptance efficiency

#### Elisabetta Spadaro Norella - Università di Genova

### Simulations

**Events:** 10000 J/ $\psi$  events in DD4hep **Stations geometry:** 

- **Position:** first station at z=15m
- Outside beam pipe:
  - $\circ$  2 beampipes at about 20 cm
  - radius reduced to 2.5 cm

#### Pseudorapidity coverage:



Very forward acceptance: 4.5<y<7



Muon stations

### Acceptance

**Scenario 1:** 1st plane of Si strip (40x20cm<sup>2</sup>) + MWPC (1m<sup>2</sup>) - **Position:** first station at z=12-20m

**Acceptance =** number of  $J/\psi$  reconstructed using tracker stations before magnet and muon stations (at least 6 hits out of 8)



 $\Rightarrow$  Investigating if it is possible to increase the acceptance:

• by reducing beam pipe radius and/or moving beam pipe down

## First estimates of yields

Luminosity:

$$\mathcal{L}= heta_{target}\cdot\Phi=1.26\cdot10^{29}cm^{-2}s^{-2}$$
  $heta_{target}=rac{N_A
ho l}{M}$  \* and  $\Phi=10^6p/s$ 

#### Expected data-taking time:

- proton run (/year):  $6.85 \times 10^6$  s
- Pb run (~1 week): 6x10<sup>5</sup> s

| Estimated yield      | σ [nb] | Flux                | Int L [pb <sup>-1</sup> ] | 3     | Yield x ε            |
|----------------------|--------|---------------------|---------------------------|-------|----------------------|
| pW, J/ψ              | 42     | 10 <sup>6</sup> p/s | 0.89                      | 0.136 | 5'000/year           |
| PbW, J/ψ             | 1890   | 10 <sup>6</sup> p/s | 0.076                     | 0.075 | 10'800/week          |
| pW, J/ψ<br>W<4.8GeV  | 0.5    | 10 <sup>7</sup> p/s | 8.9                       | 0.136 | 600/year             |
| PbW, J/ψ<br>W<4.8GeV | 72     | 10 <sup>6</sup> p/s | 0.076                     | 0.075 | 400/week<br>800/year |

**Results**:

 High yields of J/ψ for σ measurement

Integrated L:

 $\int \mathcal{L} = 0.89 \ pb^{-1}$ 

 $\int {\cal L} = 0.076 \ pb^{-1}$ 

- Yields limited by acceptance → optimization is ongoing
- Pentaquark search with 10<sup>7</sup> protons/s in pW and 10<sup>6</sup>p/s in PbW: ~2800 events in 2 years

### Conclusions

First fixed-target experiment with bent crystals at LHC to measure EMDM of charm baryons

- Main physics program is on EMDM of charmed baryons and  $\tau$  lepton
- Phase-0 already approved by LMC and planned for 2025

#### Extending the physics case to $J/\psi$ photoproduction:

- $J/\psi$  cross-section measurements in wide W range and pentaquark search, with p and Pb beams
  - $\circ~{\rm P_c}$  search would be more promising if detector acceptance can be increased  $\rightarrow$  under investigation
  - good invariant mass resolution, ~20 MeV, can be achieved
- Paper in collaboration with A. Pilloni is under preparation

Thank you for the attention!

### References

- E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, N. Neri, J. Ruiz Vidal, *Electromagnetic dipole moments of charged baryons with bent crystals at the LHC*, arXiv:1708.08483 (2017), Eur. Phys. J. C 77 (2017) 828.
- A.S. Fomin , A.Yu. Korchin, A. Stocchi, O.A. Bezshyyko, L. Burmistrov, S.P. Fomin, I.V. Kirillin, L. Massacrier , A. Natochii, P. Robbe, W. Scandale, N.F. Shul'ga, *Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals*, JHEP **1708** (2017) 120.
- V. G. Baryshevsky, On the search for the electric dipole moment of strange and charm baryons at LHC and parity violating (P) and time reversal (T) invariance violating spin rotation and dichroism in crystal, arXiv:1708.09799 (2017).
- A. S. Fomin, S. Barsuk, A. Yu. Korchin, V.A. Kovalchuk, E. Kou, A. Natochii, E. Niel, P. Robbe, A. Stocchi, *The prospects of charm quark magnetic moment determination*, arXiv:1909.04654 (2020), Eur. Phys. J. C 80, 358(2020).
- S. Aiola, etal *Progress towards the first measurement of charm baryon dipole moments,* arXiv:2010.11902 (2020), PRD 103, 072003 (2021).

### References

- L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, P. Robbe, J. Ruiz Vidal, CERN-LHCb-INT-2017-011, *Proposal to search for baryon EDMs with bent crystals at LHCb*.
- F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, A. Oyanguren, J. Ruiz Vidal, *On the search for the electric dipole moment of strange and charm baryons at LHC*, Eur. Phys. J. C **77** (2017) 181.
- L. Burmistrov, G. Calderini, Yu Ivanov, L. Massacrier, P. Robbe, W. Scandale, A. Stocchi, *Measurement of short living baryon magnetic moment using bent crystals at SPS and LHC*, CERN-SPSC-2016-030 ; SPSC-EOI-012.

For Leptons:

- J. Fu, M. A. Giorgi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, J. Ruiz Vidal, Novel method for the direct measurement of the τ lepton dipole moments, Phys. Rev. Lett. 123, 011801 (2019)
- A.S. Fomin , A. Korchin, A. Stocchi, S. Barsuk, P. Robbe, Feasibility of τ lepton electromagnetic dipole moments measurements using bent crystals at LHC, J. High Energ. Phys. (2019) 2019: 156.

### References

Photoproduction:

- Exclusive vector meson photoproduction in fixed-target collisions at the LHC, V. P. Gonçalves, M. M. Jaime, Eur. Phys. J. C (2018) 78:693, https://doi.org/10.1140/epjc/s10052-018-6185-2
- Photoproduction of pentaquark states at the LHC, V. P. Gonçalves, M. M. Jaime, Physics Letters B Volume 805, 10 June 2020, 135447

# Backup slides

## A bit of history



## Tracker's occupancy

thanks to Sara Cesare for latest plots

Velo Superpixel =  $4x^2$  pixels

tte of hits [MHz/cm

Flux of **10<sup>6</sup> p/s** (minimum bias events), on 2 cm W target

Rate 
$$= N_{
m hits}/cm^2/s$$



After magnet: <10 MHz/cm<sup>2</sup> Rate of layer 4



Maximum Fluence before magnet in the region of beam spot: ~2.2 x 10<sup>15</sup> 1 MeV neq/cm<sup>2</sup>

⇒ for cooling system design

 $\Rightarrow$  within VeloPix/TimePix3 allowed maximum rate (600 MHz/cm<sup>2</sup>)

## Inclusive Vector Meson photoproduction



Models based on **perturbative QCD** and **gluon exchange** predict a smooth dependence to E

 $\rightarrow$  to access Gluonic (generalized) parton distributions (GPD) of proton to have insights into nature of proton mass

- Recent results from GlueX with 2270  $J/\psi$ 



⇒ Our fixed-target experiment at LHC can reach high luminosity due to target density + very forward acceptance

#### Feasibility studies for:

- Jpsi and psi(2S) photoproduction cross-section & search for pentaquarks

### $J/\psi \& \psi(2S)$ cross-section measurement

 $J/\psi/\psi(2S)$  cross-section measurement in range complementary to GlueX, HERA & SLAC

HERA: Eur. Phys. J. C 24, 345–360 (2002)

- J/ψ cross-section: 20 < W < 150 GeV
- ψ(2S) cross-section: 307 events in 40<W<150GeV</li>
- **SLAC**: PRL 35, 483 (1975)
  - J/ $\psi$  cross-section: 13< E<sub> $\gamma$ </sub> < 21 GeV, 5<W<6.5 GeV
  - 1200 J/psi

Luminosity:

$$egin{aligned} \mathcal{L} &= heta_{target} \cdot \Phi & heta_{target} &= rac{N_A 
ho l}{M} \ & 
ho = 19.3 \ g/cm^3 \ & N_A = 6.02 \cdot 10^{23} \ & l = 2 \ cm \ & M = 184g \ / mol \end{aligned}$$

#### Expected yield without acceptance

• F=10<sup>6</sup> p/s,  $\int L = 0.89 \text{ pb}^{-1}$  per year

|       | σ [nb] | Yield/year |
|-------|--------|------------|
| J/ψ   | 42     | 37'000     |
| ψ(2S) | 0.76   | 670        |

### **Cross-sections**

Cross-section estimates with STARLight MC link

- 1. pW interactions. Beam energy = 7TeV
- 2. PbW interactions. Beam energy = 7TeV x Z

1. **pW: σ= 42 nb,** y in range 3<y<8 Center-of-mass energy: 4.2<W<30 GeV



⇒ Dominant process is incoherent photon-p interaction, with photon emitted by target

#### 2. PbW: σ=1.89 mub, y in range 2<y<6.5

