T_{cc} and TS

Misha Mikhasenko

Ruhr University Bochum

FDSA, Genoa

Observation of the doubly-charm tetraquark T_{cc}^+

Peak in $D^0 D^0 \pi^+$ just below $D^{*+} D^0$ threshold

Extremely narrow, ~300keV

(resolution)

Needs to be treated as

three-body effect

Studies of the doubly-charm tetraquark T_{cc}^+

QN: isoscalar (I = 0), axial ($J^{PC} = 1^{++}$)

Yields pole parameters: Sinding energy: $-360 \pm 40^{+4}_{-0}$ keV Width: $48 \pm 2^{+0}_{-14}$ keV

Prediction of the three-body spectrum

_

Tcc model and analytic continuation

Dynamic amplitude of $D^*D \rightarrow D^*D$ scattering:

$$T_{2\times 2}(s) = \frac{K}{1 - \Sigma K} = \frac{K(m^2 - s)}{m^2 - s - i g^2 \left(\rho_{\text{tot}}(s) + i\xi(s)\right)}$$

where K is the isoscalar potential:

$$K = rac{1}{m^2 - s} egin{pmatrix} g \cdot g & -g \cdot g \ -g \cdot g & g \cdot g \end{pmatrix},$$

and Σ is the loop function:

Model parameters: $|g|^2$ and m^2 – bare

similar to [MM et al. (JPAC), PRD 98 (2018) 096021]

Effective range expansion

Expansion coefficients

$$k\cot\delta(k)=\frac{1}{a}+r\frac{k^2}{2}+O(a^3k^4)$$

- k is a break-up momentum
- 1/a, r are coefficient in expansion

Can be done by computing derivatives of regular (k cot delta)

Different values on Effective range discussion

Scattering parameters (a,r) gives simplified description of the amplitude near threshold.

A: Baru et al., 2110.07484 B: Esposito et al., 2108.11413 C: LHCb, 2109.01056 D: Maiani & Pilloni GGI-Lects E: Mikhasenko, 2203.04622 Scattering length is well constrained by the binding energy

Limit is set in the effective range (related to the width)

High Weinberg compositeness is obtained

T_{QQ} in Lattice: left hand cut

Tbc

Effective range expansion

Convergence of the expansion

Effective range expansion

• First observation:

dependence of expansion parameters on radius of Cauchy integrals

- Reason: log branch point nearby
- Convergence radius ~20keV
- Rethinking of the effective range parameters & Weinberg compositeness is needed

Small radius of convergence

Triangle Singularity & LHC

Simple setup

- mD = 1.8
- mD*=2.0
- Mass of pion is varied
- Red crosses location of log branch points

Femtoscopy and Unitarization

Tcc: discussion on production and femtoscopy

Basdevant Unitarization

Unitarization with background

Interference with spherical wave

$$T_{D}^{u}(M^{2}) = T_{D}(M^{2})$$
$$-\frac{1}{2i\pi} D(M^{2}) \int_{M_{R}^{2}}^{\infty} ds' \frac{\operatorname{disc}(D^{-1}(s')) T_{D}(s')}{(s'-M^{2})}.$$
(3.5)

$$C_{D^+D^{*0}}(p_{D^+}) = 1 + 4\pi \theta (q_{\max} - p_{D^+}) \times \int_0^{+\infty} dr r^2 S_{12}(r) \Big\{ \big| j_0(p_{D^+}r) + T_{22}(E) \widetilde{G}^{(2)}(r;E) \big|^2 + \big| T_{12}(E) \widetilde{G}^{(1)}(r;E) \big|^2 - j_0^2(p_{D^+}r) \Big\}$$

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.16.657

https://arxiv.org/pdf/2303.06079.pdf

RUB

Summary

Part1:

Effective range parameters can be mathematically well defined for three-body scattering The convergence radius is small -- due to one-pion exchange singularity (Triangle singularity) => a,r do not reflect properties of T_{cc}

Part2:

Approach to Femtoscopy & Dispersion Unitarization has similarities in physical picture and mathematical approach. Differences are also prominent:

- Inclusive vs Exclusive,
- Wave-functions vs S-matrix scattering

Clarification is needed.

Backup

Partially reconstructed *T*⁺_{*cc*}

- Lineshape of $D^0 D^0$ and $D^0 D^+$ spectra are predicted well by the model
- Relative yeilds of D^0D^0 and D^0D^+ is in good agreement with the model predictions