
The A(i)DAPT program
AI for Data Analysis and Preservation

The A(i)DAPT programTommaso Vittorini



• Data collected by NP/HEP  experiments are (always) affected by the detector’s effects
• Before starting physics analysis the detector’s effect unfolding is required 
• Traditional observables may not be adequate to extract physics in multidimensional space (multi-particles in the final state)
• At High-Intensity frontiers, data sets are large and difficult to manipulate/preserve

Should AI support NP/HEP experiments to 
extract physics from data in more efficient 

way?

Develop AI – supported procedures to:
• Accurately fit data in multiD space
• Unfold detector effects
• Compare synthetic (AI-generated) to experimental data
• Quantify the uncertainty (UQ) 

Collaborative effort (regular meeting)
• ML experts (ODU, Jlab)
• Experimentalists (Jlab Hall-B)
• Theorists (JPAC, JAM) 
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The A(i)DAPT road map

• Deploy an AI Generative Model to reproduce NP/HEP data
• Detector effects unfolding: smearing
• Detector effects unfolding: acceptance
• Extract few dimensions cross-section (PDF) (e.g. inclusive electron scattering - MC)
• Extend the closure test to cross-sections in a mutiD phase-space (e.g. 2-pion photoproduction - MC)
• Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-g11 2-pion data)
• Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-g11 2-pion data)
• Combine data from different final states (e.g. CLAS-g11 3-pion/ω data)
• Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering - MC)
• Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-g11 2-pion data)
• Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g11 2-pion + 3-pion/ω data)
• Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-g11 2-pion data)
• …

• Extract physics out of our data



The A(i)DAPT program3 - Tommaso Vittorini

This Talk
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• Validate the analysis procedure extracting cross-section from data (e.g. high energy CLAS-g11 2-pion data)
• Combine data of the same final state taken in different kinematics (e.g. low energy CLAS-g11 2-pion data)
• Combine data from different final states (e.g. CLAS-g11 3-pion/ω data)
• Extract cross-section and amplitudes in a 2-body reaction (e.g. ππ scattering - MC)
• Extract amplitudes from a multi-particle exclusive channel (e.g. CLAS-g11 2-pion data)
• Extract amplitudes in multi- coupled-channel analysis (e.g. CLAS-g11 2-pion + 3-pion/ω data)
• Connect NN features to different physics processes (e.g. baryon and meson resonances in CLAS-g11 2-pion data)
• …

• Extract physics out of our data

✓

✓

✓

✓

in progress

in progress

in progress



• Detector effects make measured observables  (detector-level) different from the ‘true’ observables (vertex level)

 Acceptance: Any measurement can access only a limited portion of the phase space. What can we say about these 
unmeasured regions?

 Resolution: Any measurement has an experimental resolution that may modify cover up effects that we’re looking for     
 

Ø Interpolation: deal with the holes in the phase space  
Ø Extrapolation: extend our coverage from the borders of measured regions

Ø Spikes may be concealed  behind the detector resolution
Ø Measurements could be extended to unphysical regions

• Mitigation strategy:
Ø Acceptance: ‘Fiducial volumes’ to exclude unmeasured regions and extend the covered measured of the phase 

space
Ø Resolution: build and validate ML-models  to unfold resolution effects

Detector unfolding
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• Generative model based on the competition between two Neural 
Networks:  Generator vs Discriminator
• Generator produces synthetic data which progressively reproduce 

realistic data and the Discriminator has to distinguish between 
synthetic and realistic data

• Generator be used to retain high dimensional correlations (detector 
proxies)

• Generator can be used to provide highly realistic pseudo-data in an 
extremely fast way

Generative Adversarial Networks (GANs)
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A simple case study: DIS scattering
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Detector proxy

ML Event Generator GAN scheme 

• 100-d white noise entered at 0, unit standard dev.
• Generator:  5 hidden layers / 512 neurone per layer, ReLU activation function. 

Last layer connected to 2 neurons output to generate ν1 and ν2 variables
• Discriminator: same NN architecture as for the generator
• Detector proxy: similar architecture
• Least Squares GAN (LSGAN)
• Trained adversarially for 100000 epochs (pass through the training data set)
• Adam’s optimizer

• eic-smear: parametric  smearing routine for the Electron Ion Collider 
detectors (no GEANT-based simulations)

• Parameters tuned to reproduce ZEUS/H1 detectors
• Full 4π acceptance

Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A. N. Hiller Blin,
M. P. Kuchera, Y. Li, T. Liu, R. E. McClellan, W. Melnitchouk, E.
Pritchard, M. Robertson, N. Sato, R. Strauss, and L. Velasco
Phys. Rev. D 106, 096002



A simple case study: DIS scattering
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I) GAN training without detector effects

Pseudo-data sample (JAM)
• Inclusive electron DIS generated at ECM=318.2 GeV (HERA

kinematics)
• 2-dim differential cross section dσ/dxdQ2

• Lorentz boosted from CM to Lab (+ uniform azimuthal angle)
• To reduce violation of momentum conservation on the edge

of the phase space due to smearing effects, electron
momentum is replaced by new variables:

Uncertainty Quantification via pull calculation

• Metric: pull

• Bootstrap with 10 independently trained GANs
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I) GAN training without detector effects

Pseudo-data sample (JAM)

Uncertainty Quantification via pull calculation

• Metric: pull

• Bootstrap with 10 independently trained GANs

• Inclusive electron DIS generated at ECM=318.2 GeV (HERA
kinematics)

• 2-dim differential cross section dσ/dxdQ2

• Lorentz boosted from CM to Lab (+ uniform azimuthal angle)
• To reduce violation of momentum conservation on the edge

of the phase space due to smearing effects, electron
momentum is replaced by new variables:



A simple case study: DIS scattering
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II) GAN training with detector effects

eic-smear introduces a significant distortion to the detector level 
event samples, in particular on 𝜈!



A simple case study: DIS scattering
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Conclusions for the DIS case

The ‘closure test’ was successful:

• GAN generated events trained on vertex level pseudo-data are recovered

• GAN reconstructed events trained on detector-smeared pseudo-data are recovered

• GAN generated events trained on reconstructed events and unfolded with a GAN detector proxy are
recovered with larger error bars, in particular on the edge of the phase space

• The PDFs are correctly recovered



Detector acceptance
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• Simple 2-body process:  𝛾𝑝 → Δ" 1232 → 𝜋#𝑝

• Simple model:      Breit-Wigner amplitude with parameters          and

• Goals:     
Ø Build a single GAN model which includes all the available phase space of the same reaction in 

order to understand if extending the range of the measured phase space would improve our 
knowledge of relevant observables 

Ø Quantify the model dependence on the unmeasured regions of the phase space

• Two independent variables for the process: We chose them to be the scattering 𝜃$%&'
!

angle and  
the azimuthal 𝜙$%&'

!
angle in the lab frame
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• Implementing CLAS acceptance cuts we define three 
different measured topologies for the reaction 𝛾𝑝 → 𝜋#𝑝

Ø Topology 0:  𝛾𝑝 → (𝜋#𝑝) (Unmeasured)

Ø Topology 1:  𝛾𝑝 → 𝜋#(𝑝)

Ø Topology 2:  𝛾𝑝 → 𝜋# 𝑝

Ø Topology 3: 𝛾𝑝 → 𝜋#𝑝

Combining the topologies in the lab frame 
looking at 𝜋# variables (𝜃$%&'

! , 𝜙$%&'
! ):

3°  topology:
Both particles in 

the final state are 
observed

• Build a single GAN model which includes all the 
measured phase space regions + different models 
in the unmeasured region 

1° topology:
Observed 𝜋!

2° topology:
Observed recoil 

proton

Detector acceptance



The A(i)DAPT program13 - Tommaso Vittorini

• Distinguish different models, built modifying the amplitudes, which will cover the unmeasured region of the phase

• Build two different datasets  (PS and Model2) to train the same GAN architecture with them to check the model 
dependence 

• 𝑀𝑜𝑑𝑒𝑙1 = (𝑀1"#$%) will be considered the equivalent of observed data
• Dataset1: (𝑃𝑆&!, 𝑀1"#$%)
• Dataset2: (𝑀2&!, 𝑀1"#$%) • Histograms considering just the measured quantities (and 

check that for both dataset the ’true’ observed variables 
are recovered)

• Histogram considering all the phase space (measured and 
unmeasured) to quantify the model dependence

Detector acceptance



A(I)DAPT program aims to demonstrate a novel way to extract and interpret physics observables

We performed a positive closure test on inclusive DIS scattering: 
• We demonstrated that GANs can effectively reproduce desired distributions
• We demonstrated that GANs are a viable tool to unfold detector effects (smearing) to generate a synthetic copy of data
• Preserve data in alternative compact and efficient form
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Summary

We are working on:
• Quantifying the systematic error introduced by the detector acceptance
• Further verify that this procedure is well defined confronting the results obtained analysing CLAS data with 

traditional analysis in order to extract a 4D cross-section
• Make this procedure an efficient way to analyze CLAS12 2𝜋 data (Marco)
• Evaluating scattering amplitudes to generalize results (Gloria) 



Thank you!
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Credit: Y.Alanazi Awadh, , P..Ambrozewicz, G. Costantini A.Hiller Blin, E. Isupov, T. Jeske, 
Y.Li, L.Marsicano W. Menlnitchouk,  V.Mokeev, N.Sato, A.Szczepaniak, T.Viducic

𝜸𝒑 → 𝝅"𝝅(𝒑  (unpolarized)
• Fully known initial state
• (3x3) – 4 = 5 Independent variables 
• Possible choice: 𝑀''

! , 𝑀)'
! , 𝜃', 𝛼, 𝜙

 CLAS g11 2𝜋 photoproduction:
• 𝐸* = (3	 − 3.8)	𝐺𝑒𝑉 
• Focus on 𝛾𝑝 → 𝑝𝜋"(𝜋() 

• 𝜋( momentum evaluated as missing momentum
• small contamination from 𝛾𝑝 → 𝑝𝜋"(𝜋(𝑋)

•  Main contribution to dynamics: 
• 𝜌#photoproduction
• Δ"" resonance excitation

Goal: evaluate cross section in multiD phase space AI could provide a new way to look at data and 
to extract observables and physics interpretation 

Exclusive reactions: 𝟐 → 𝟑 
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𝑑+𝜎(𝛾𝑝 → 𝑝𝜋"𝜋()
𝑑𝑀'' 𝑑𝑀)' 𝑑cos 𝜃 𝑑𝛼 𝑑𝜙

𝜌"(770)Δ#
#
(1
23
2)



CLOSURE TEST 
Can GANs reproduce multi dimensional correlations unfolding detector effects? How data generated by a 
GAN and unfolded with a GAN-based detector proxy compare to vertex-level events?

1. Generate events with a MC model

2. Simulate detector smearing using MC (GSIM-GEANT)

3. DS-GAN to simulate detector effects 
• Training on phase-space-only pseudo-data 

4. UNF-GAN to generate synthetic events
• training over MC pseudo-data

5. Compare synthetic GAN data to MC pseudo-data

6. Replace pseudo-data with CLAS data in training to unfold 
the vertex-level experimental distributions

𝟐𝝅 photoproduction closure test

Credit: T.Alghamdi, M.Battaglieri, A.Golda, A. Hiller Blin, L.Marsicano, W.Melnitchouk,
G.Montaña, E.Isupov,Y.Li,V.Mokeev,A.Pilloni, N.Sato,A.Szczepaniak,T.Vittorini,Y.Alanazi
arXiv:2307.04450
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𝟐𝝅 photoproduction closure test
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Generate events with a MC model
• Include measured cross sections, 

angular distributions, main 
resonances and decay (𝜌#, Δ"", Δ#)

Simulate detector smearing
• Simulation of detector effects 

(acceptance and resolution) using 
GSIM-GEANT

Credit: T.Alghamdi, M.Battaglieri, A.Golda, A. Hiller Blin, L.Marsicano, W.Melnitchouk, G.Montaña, E.Isupov, Y.Li, V.Mokeev, A.Pilloni, N.Sato, A.Szczepaniak, T.Vittorini, Y.Alanazi
arXiv:2307.04450



DS-GAN

𝟐𝝅 photoproduction closure test
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Detector simulator GAN
• Secondary GAN to learn detector effects
• Trained on phase space MC events
• Uncertainty quantification via pull calculation

DS-GAN learned detector effects!

Credit: T.Alghamdi, M.Battaglieri, A.Golda, A. Hiller Blin, L.Marsicano,
W.Melnitchouk, G.Montaña, E.Isupov, Y.Li, V.Mokeev, A.Pilloni, N.Sato,
A.Szczepaniak, T.Vittorini, Y.Alanazi arXiv:2307.04450



𝟐𝝅 photoproduction closure test
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Training of the UNF-GAN with pseudo-data

• Trained on MC pseudo-data 
• Generated synthetic vertex-level data 
• Detector effects applied with DS-GAN
• Uncertainty estimated with pull quantification

UNF-GAN can reproduce detector level pseudo-data within ±𝟏𝝈
Correlations are preserved both in 2D and in 4D distributions within ±𝟏𝝈

1D 2D 4D

Credit: T.Alghamdi, M.Battaglieri, A.Golda, A. Hiller Blin, L.Marsicano,
W.Melnitchouk, G.Montaña, E.Isupov, Y.Li, V.Mokeev, A.Pilloni, N.Sato,
A.Szczepaniak, T.Vittorini, Y.Alanazi arXiv:2307.04450



Next step
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The next step to achieve A(i)DAPT goals: 

• Application to real data
• Train UNF-GAN using CLAS g11 data 
• Assess GAN capability to mimic real data

• Application to CLAS12 detector and physics
• Train DS-GAN on CLAS12 pseudo-data
• Apply UNF-GAN to electroproduction data

• Extrapolation of scattering amplitudes
• Extract amplitudes from differential 

cross-sections exploiting theoretical constraints
• Test on elastic scattering 𝜋"𝜋( → 𝜋"𝜋(
• Extend to multi-particle exclusive channels

Our goal is to develop a new tool accessible to everyone and that can be used to improve any analysis 



DS-GAN training on CLAS12 pseudodata
• Different detector layout
• Robustness test 

CLAS12 application

Credit: Derek Glazier, Tareq Alghamdi
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The same GAN can reproduce with sufficient 
precision also vertex-level data for CLAS12 

detector



Electroproduction - e𝒑 → 𝒆𝝅D𝝅E𝒑
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DS-GAN capability of 
mimicking detector effects can 
be generalized to different 
values of 𝒒𝟐 and can be 
generalized to generate any 
variable of interest 

• 7 independent variables: 
𝑠 = 𝑝* + 𝑝)

!, 𝑡 = 𝑝* − 𝑝''
!, 𝑚'', 𝜑-./ , 𝜃, 𝜙, 𝑞!

• Increased DS-GAN output size to generate new variables



A(I)DAPT program aims to demonstrate a novel way to extract and interpret physics observables

• We performed a successful closure test on 2𝜋 photoproduction pseudo-data
• GAN can reproduce detector effects on data 
• GAN can reproduce synthetic data that retain multi-dimensional correlation as “real” data

• Proven algorithm robustness: 
• Able to reproduce different detector layouts (CLAS, CLAS12)
• Can simulate different processes (photoproduction, electroproduction)

We are working on: 
• Quantification of systematic error introduced by detector acceptance (Tommaso)
• Application on real data (CLAS and CLAS12 2𝜋 data)
• Evaluation of scattering amplitude to generalize results (Gloria)

The A(i)DAPT program25 - Marco Spreafico

Summary



Thank you!
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Amplitude extraction with GANs

The A(i)DAPT programGlòria Montaña

5th Workshop on Future Directions in Spectroscopy Analysis (FDSA2024)
Genova, January 22-24, 2024
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• Elastic scattering 

• Breit-Wigner type partial waves

• Differential cross section

Amplitude extraction with GANsG. Montaña

Physics model

• Physics constraint: Unitarity of the partial waves
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Generator

Noise

Discriminator

Real
Fake

Generated data

Training data

+ Physics constraints in 
Loss function

Two neural networks, the generator and the discriminator:

• The generator needs to capture the data distribution

• The discriminator estimates the probability that a sample comes from the training data rather than from the generator

Generative Adversarial Network (GAN) with constraints

Amplitude extraction with GANsG. Montaña

Model + gaussian noise
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Amplitude extraction with GANsG. Montaña

Preliminary results (i)

• Cross section is reproduced qualitatively
• Unitarity constraint is satisfied
• Partial waves               are large
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Amplitude extraction with GANsG. Montaña

More physics constraints

• Unitarity of the partial waves

• Suppression of higher partial waves



33Preliminary results (ii)

Amplitude extraction with GANsG. Montaña
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• Cross section is reproduced qualitatively
• Unitarity constraint is satisfied
• Partial waves               are suppressed

• Ambiguity in the sign of the real part
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Amplitude extraction with GANsG. Montaña

More physics constraints

• Unitarity of the partial waves

• Suppression of higher partial waves

• Positive derivative of the phase shift
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Amplitude extraction with GANsG. Montaña

Preliminary results (iii)
Model

Generated

• Cross section is reproduced qualitatively
• Unitarity constraint is satisfied
• Partial waves               are suppressed

• The real part takes the right sign
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Amplitude extraction with GANsG. Montaña

B. Generative Adversarial Networks (GANs):
extract amplitude from differential cross sections, using 
unitarity

A. Normalizing Flows:
extract differential cross section (∝ Probability Density) from 
events distribution

Data Flow Inverse 
flow

Reconstructed 
PDF

Latent space
Generator

Noise Generated data

Discriminator

Real
Fake

Generated 
data

Training 
data

Events  → Cross section  → Amplitude
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Amplitude extraction with GANsG. Montaña

Summary and outlook

Preliminary status, but the results of using GANs to extract amplitudes from cross sections employing physics 
constraints are promising.

Next steps:
• Increase gaussian noise of the training pseudodata set (currently 0.1%)
• Adjust the generator and/or discriminator models and hyperparameters for convergence
• Determine quantitative agreement between generated and model

• Extension to the event level using normalizing flows

• Extension to more complicated processes
→ Generalization of the physics constraints


