Analyzing Light Resonances in Two-Pion Photoproduction through a Regge Formalism Approach

Nadine Hammoud

Institute of Nuclear Physics, PAS, Kraków, Poland With Łukasz Bibrzycki, Robert J. Perry, Vincent Mathieu, Adam P. Szczepaniak

5th Workshop on Future Directions in Spectroscopy Analysis

Nadine Hammoud IFJ-PAS FDSA2024, Genoa, Italy January 22, 2024

Outline

- Motivation
- Double pion photoproduction:
 - Kinematics
 - Model description:
 - Resonance Production
 - Non-resonant Production
 - Deck Mechanism
 - NRS- and NRP-waves
 - Model Refinement and Free Parameter Introduction
 - Results
- Conclusions

2

Exploring Diverse Production Mechanisms:

It's crucial to conduct a comprehensive investigation of various production methods to understand the intricate processes involved in the production and decay of exotic particles.

Leveraging New CLAS12 and GleuX Data:

The analysis of previously unexplored data from CLAS12 and GlueX offers a unique opportunity for a comprehensive study. This analysis aims to reveal valuable insights into production mechanisms, including pion exchange, final state interactions, and reggeization.

Overcoming Model Limitations:

Addressing constraints in earlier models, particularly those related to high momentum transfer, is essential for advancing our understanding of double pion photoproduction.

э

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ ・

Two-Pion Photoproduction: Kinematics

Process:

$$\gamma(q,\lambda_{\gamma}) + p(p_1,\lambda_1) \to \pi^+(k_1) + \pi^-(k_2) + p(p_2,\lambda_2)$$

Kinematic Variables:

$$s = (p_1 + q)^2$$

$$s_i = (k_i + p_2)^2$$

$$t = (p_1 - p_2)^2$$

$$s_{\pi\pi} = (k_1 + k_2)^2 = m_{\pi\pi}^2$$

ヨトィヨト

æ

Two-Pion Photoproduction: Helicity Frame

Helicity Frame: $\Omega^{H}(\theta^{H}, \phi^{H})$

$$p_{1}^{H} = |\vec{p_{1}}|(\sin \theta_{1}, 0, \cos \theta_{1})$$

$$p_{2}^{H} = |\vec{p_{2}}|(0, 0, -1)$$

$$q^{H} = |\vec{q}|(-\sin \theta_{q}, 0, \cos \theta_{q})$$

$$k_{1}^{H} = |\vec{k_{1}}|(\sin \theta^{H} \cos \phi^{H}, \sin \theta^{H} \sin \phi^{H}, \cos \theta^{H}) = -k_{2}^{H}$$

$$K_{1}$$

$$P_{2}$$

$$K_{2}$$

$$r-z \text{ plane}$$

Model Description

For the process $\gamma(q, \lambda_{\gamma}) + p(p_1, \lambda_1) \rightarrow \pi^+(k_1) + \pi^-(k_2) + p(p_2, \lambda_2)$, we consider

$2 \rightarrow 3$ Dynamics

Built from known dynamics in $2 \rightarrow 2$ subchannels:

- $\pi\pi$ resonances are directly implemented in our model.
- πN resonances are embedded in the Deck mechanism.

A B F A B F

Meson Resonances Below 1 GeV

Full width (Breit-Wigner) = 149.1 ± 0.8 MeV

R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022)

7

э

Meson Resonances Above 1 GeV

 $f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{++})$$

Mass (T-Matrix Pole \sqrt{s}) = (1260–1283) – i(90–110) MeV Mass (Breit-Wigner) = 1275.4 ± 0.8 MeV Full Width (Breit-Wigner) = 186.6 ± 2.3 MeV

See the review on "Spectroscopy of Light Meson Resonances" and a note on "Non- $q\overline{q}$ Candidates" in PDG 06, Journal of Physics G33 1 (2006).

 $\begin{array}{l} \mbox{Mass} \ (\mbox{T-Matrix Pole}\sqrt{s}) = (1250\mbox{-}1440) - i(60\mbox{-}300) \ \mbox{MeV} \\ \mbox{Mass} \ (\mbox{Breit-Wigner}) = 1200 \ \mbox{to} \ 1500 \ \mbox{MeV} \\ \mbox{Full Width} \ (\mbox{Breit-Wigner}) = 200 \ \mbox{to} \ 500 \ \mbox{MeV} \\ \end{array}$

(日)

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

- Utilizing an Effective Lagrangian: Employing a one-particle exchange model.
- "Reggeize" Transformation: Employing the Reggeization process, represented by

$$R_N(s,t) = \frac{1 + e^{i\pi\alpha_N(t)}}{\sin(\pi\alpha(t))} \left(\frac{s}{s_0}\right)^{\alpha_N(t)}$$

 "Breit-Wignerize" Approach: Adopting the Breit-Wignerization method as described in [Phys. Rev. D 98, 030001 (2018)],

$$\mathsf{BW}^{\mathsf{dep}}(s,l) = \frac{n(s)}{m_{\mathsf{BW}}^2 - s - im_{\mathsf{BW}}\Gamma_{\mathsf{tot}}(s)}, \text{ where } n(s) = \left(\frac{q}{q_0}\right)^l F_l(q,q_0)$$

э

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Resonant Production

Thus, the partial wave amplitude is expressed as:

$$\mathcal{M}_{\lambda_1,\lambda_2,\lambda_q}(s,t,s_{\pi\pi},\Omega_H) = \sum_{lm} \mathcal{M}_{\lambda_1,\lambda_2,\lambda_q}^{lm}(s,t,s_{\pi\pi},\Omega_H) Y_{lm}(\Omega_H)$$
$$\mathcal{M}_{-\lambda_1,-\lambda_2,-\lambda_q}^{l-m} = (-1)^{m-\lambda_2-\lambda_q+\lambda_1} \mathcal{M}_{\lambda_1,\lambda_2,\lambda_q}^{lm}$$

10

Non Resonant Production: Deck Mechanism

The Deck Mechanism describes non-resonant production with the following equation:

$$\mathcal{M}_{\lambda_{1}\lambda_{2}\lambda_{q}}^{\text{Deck,GI}}(s,t,s_{\pi\pi},\Omega) = \sqrt{4\pi\alpha} \\ \times \left[\left(\frac{\epsilon(q,\lambda_{q}) \cdot k_{1}}{q \cdot k_{1}} - \frac{\epsilon(q,\lambda_{q}) \cdot (p_{1}+p_{2})}{q \cdot (p_{1}+p_{2})} \right) \beta(t_{\pi_{1}}) \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-}(s_{2},t) \right. \\ \left. - \left(\frac{\epsilon(q,\lambda_{q}) \cdot k_{2}}{q \cdot k_{2}} - \frac{\epsilon(q,\lambda_{q}) \cdot (p_{1}+p_{2})}{q \cdot (p_{1}+p_{2})} \right) \beta(t_{\pi_{2}}) \mathcal{M}_{\lambda_{1}\lambda_{2}}^{+}(s_{1},t) \right],$$
Natine Hammoud IELEPAS EDSA2024 Genea, taky, Japuary 22, 2024

Non Resonant Production: NRP- NRS- Waves

$$F_{bkg}(s_{\pi\pi}) \equiv \left[(s_{\pi\pi}^{\text{th}} - s_{\pi\pi}) (s_{\pi\pi}^{\text{max}} - s_{\pi\pi}) \right],$$

where

$$s_{\pi\pi}^{\text{th}} = 4m_{\pi}^{2}$$

$$s_{\pi\pi}^{\text{max}} = s + m_{p}^{2} - \frac{1}{2m_{p}^{2}} \Big[(s + m_{p}^{2})(2m_{p}^{2} - t) - \lambda^{1/2}(s, m_{p}^{2}, 0)\lambda^{1/2}(t, m_{p}^{2}, m_{p}^{2}) \Big].$$

Thus

$$\mathcal{M}_{P}^{\mathsf{nr}} = R_{f_{2}}(s,t) \frac{1}{s} F_{bkg}(s_{\pi\pi}) \overline{u}(p_{2},\lambda_{2}) \psi'(\lambda_{\gamma}) u(p_{1},\lambda_{1}),$$

$$\mathcal{M}_{S}^{\mathsf{nr}} = \frac{1}{s} g_{s_{j}}^{\mathsf{nr}} R(s,t) [(s_{\pi\pi}^{\mathsf{th}} - s_{\pi\pi})(s_{\pi\pi}^{\mathsf{max}} - s_{\pi\pi})] \overline{u}(p_{2},\lambda_{2}) \gamma^{\mu} u(p_{1},\lambda_{1}) v_{\mu}(\lambda_{\gamma}).$$

イロト イロト イヨト イヨト

- Model limitations addressed by introducing free parameters to redefine *t*-dependence (g^{lm}) in resonant and non-resonant components.
- Modified model equation:

$$\tilde{\mathcal{M}}_{\lambda_1,\lambda_2,\lambda_q}(s,t,s_{\pi\pi},\Omega_H) = \sum_{lm} g^{lm} \mathcal{M}_{\lambda_1,\lambda_2,\lambda_q}^{lm}(s,t,s_{\pi\pi},\Omega_H) Y_{lm}(\Omega_H)$$

• A total of 30 free parameters: 2 each for $f_0(500)$, $f_0(980)$, $f_0(1375)$, and background; 6 for ρ via f_2 and background; and 10 for $f_2(1270)$.

イロト イポト イヨト イヨト

$E_{\gamma} = 3.7 \text{ GeV}, \quad < Y_{LM} > = \sqrt{4\pi} \int d\Omega^{H} \frac{d\sigma}{dt dm_{\pi\pi} d\Omega^{H}} \operatorname{Re} Y_{LM}(\Omega^{H}) \text{ [Phys.Rev.D 80]}$

(2009) 072005]

 E_{γ} =3.7 GeV:

イロト イタト イヨト イヨト

Partial Wave Analysis of P-Wave Contributions:

- At t = -0.45, both P^+ and P^0 reach maxima at the ρ peak.
- Surprisingly, P^0 appears slightly larger than P^+ , contrary to the expectation based on s-channel helicity conservation (SCHC) i.e. $|P^+| > |P^-|$, $|P^0|$ near $t \approx 0$.

イロト イロト イヨト イヨト

Nadine Hammoud IFJ-PAS

FDSA2024, Genoa, Italy January 22, 2024

Innovative Theoretical Framework:

Developed a new theoretical framework to improve accuracy.

Integrated Resonance Effects:

Integrated resonance effects for a comprehensive model.

• Diverse Methodology:

Applied various methods to enhance flexibility and accuracy.

• Empirical Validation:

Empirically validated the model with experimental data fitting.

э

イロト イポト イヨト イヨト

Thank you

A D > A A P >

э

→ Ξ →

(A) (E) (A) (E)

A D > A A P >

イロト イロト イヨト イヨ

э

→ Ξ →

Nadine Hammoud IFJ-PAS

FDSA2024, Genoa, Italy January 22, 2024

Nadine Hammoud IFJ-PAS

FDSA2024, Genoa, Italy January 22, 2024

Nadine Hammoud IFJ-PAS

Nadine Hammoud IFJ-PAS

FDSA2024, Genoa, Italy January 22, 2024

Light Meson Spectroscopy

TODAY

Standard Model of Elementary Particles

qq

g g g g

Standard (Quark) Model

π

Beyond the Standard (Quark) Model

イロト イロト イヨト イヨト

K

K⁰

Q = 0

q

η π0

η'

S = +1

S = 0

S = -1

Q = +1

 K^0

Κ

O = -1

(π

æ

q

q