

Exploring long-lived particles decaying into Displaced Dimuons at √s = 13.6 TeV : Innovative Triggers for Enhanced Sensitivity at the CMS Experiment

La Thuile 2024

Mangesh Sonawane On behalf of the CMS Collaboration

08.03.2024

Introduction - Long Lived Particles

Several theories have been proposed to explain the incompleteness of the SM - Beyond Standard Model **(BSM)** theories

 Examples : Supersymmetry (SUSY), Weakly Interacting Massive Particles (WIMPs)

From searches at colliders and direct detection experiments : Everything is so far consistent with Standard Model predictions

However there could still be interesting signatures that could be accessible, but we haven't yet probed extensively!

 \Rightarrow Long lived particles!

CMS

ÖSTERREICHISCHE

Secondary dimuon vertex displaced from the proton-proton collision point by up to several meters.

08-03-2024

Mangesh Sonawane | La Thuile 2024

i.e. Displaced Dimuons

Search for Displaced Dimuons in Run 3

- Signature is a pair of muons originating from a secondary vertex macroscopically displaced from the proton-proton collision point.
 - X Muon signatures allow utilization of the largest part of detector volume.
- X Two types of muons based on reconstruction : STA (Standalone) and TMS (Tracker + Muon System)
 - X Gives three complementary and exclusive categories : STA-STA, TMS-TMS, STA-TMS
- First direct search for BSM with LHC Run 3 data^[1]: significant improvements over previous (Run 2) results!^[2]

Signal models

08-03-2024

Trigger Strategy

08-03-2024

X

X

X

X

HLT :

X

X

X

CMS-EX0-23-014

× Efficiency in **signal** increased by a factor **2x to 4x**!

Trigger Performance

Trigger Performance

- **×** Efficiency in **signal** increased by a factor **2x to 4x**!
- × Performance in data :
 - **X Drell-Yan** : prompt dimuons
 - rejection factor of 2000

Trigger Performance

- **×** Efficiency in **signal** increased by a factor **2x to 4x**!
- × Performance in data :
 - X Cosmic muons, $J/\psi \rightarrow \mu\mu$:

displaced dimuons, proxy for signal

Prompt dimuons suppressed

Offline analysis : Key Observables

- Powerful handles to distinguish signal from background
 - Muon Track/Dimuon Vertex quality (fit χ^2)
 - STA to TMS association.
 - Displacement : $L_{xy}/\sigma(L_{xy})$, $d_0/\sigma(d_0)$
 - Kinematics :
 - p_T^{μ} , $\alpha_{\mu,\mu}$, $p_T^{\mu\mu}$, Collinearity $|\Delta \Phi|$
 - Invariant mass : m_{uu} > 10 GeV
 - Isolation
 - Muon direction
 - Timing
 - Charge (OS/SS)
- Signal region designed to be free from SM backgrounds
 - Misidentification or mis-reconstruction of muons can cause background events to enter the signal region.

Backgrounds

- **X** Backgrounds may be **symmetric** or **asymmetric** in Collinearity $\Delta \Phi$.
 - \times This depends on whether the p_T and L_{xv} vectors point in the same direction (correlated) or not.

Symmetric

- Symmetrically distributed around $\pi/2$
- Occurs when p_T and Lxy vectors are uncorrelated
 - Mismeasured (prompt) Drell-Yan (DY), dibosons,
 - Cosmic ray muons
 - Unrelated jets, W+jets

Asymmetric

- Signal like peak at zero
- Occurs for non-prompt QCD resonances
 - Mismeasured low-mass non-prompt resonances (e.g. J/ψ)
 - Cascade decays resulting in 2+ muons (e.g. from B mesons)

Backgrounds

Backgrounds estimated using the ABCD method, measured in CRs adjacent to SR :

 $N_{SR}^{A} = (N_{B} * N_{C})/N_{D}$

- **×** For $\Delta \Phi$ symmetric backgrounds (e.g. DY) :
 - Signal expected to have small $\Delta \Phi$

ΔΦ < <i>π</i> / <i>C</i>	ΔΦ > <i>π</i> - <i>π</i> / <i>C</i>	
A – DY background in SR	В	
С	D	
Inverted STA-TN	1S association	

For the dark photon model : TMS-TMS : C = 30STA-STA : C = 10For the RPV SUSY model : C = 4

Backgrounds

Backgrounds estimated using the ABCD method, measured in CRs adjacent to SR :

 $N_{SR}^{A} = (N_{B} * N_{C})/N_{D}$

- **×** For $\Delta \Phi$ asymmetric backgrounds (e.g. QCD) :
 - Signal expected to have **Opposite Sign** and **isolated muons**

Results - Dark Photon model

08-03-2024

X

X

X

Results - RPV SUSY model

- **Corrected mass** to account for neutrino: minimum mass of secondary vertex consistent with direction of the LLP $m_{\mu\mu}^{\text{corr}} = \sqrt{m_{\mu\mu}^2 + p_{\mu\mu}^2 \sin^2 \theta} + p_{\mu\mu} \sin \theta$,
- Observed number of events consistent with predictions.
 - No excesses observed.

Drell-Yan

Stat. uncertainty

300

QCD

200

Events / bin

50H

40F

30

20F

10

CMS

STA-STA

 $|\Delta \Phi| < \pi/4$

100

36.6 fb⁻¹ (13.6 TeV

 \tilde{q} (125 GeV) $\rightarrow q\tilde{\chi}^0$ (50 GeV, ct = 200 cm) \times 3

 $\rightarrow q\tilde{\chi}^0$ (150 GeV, $c\tau = 250$ cm) $\times 4$

400

500

Results - Limits

Results used to set upper limits on model parameters :

- For the Dark Photon model : X
 - Limits set on B(H \rightarrow Z_nZ_n)
 - Run 3 (2022 only) limits comparable or better than full Run 2 with only 40% of the luminosity! $(36.6 \text{ fb}^{-1} \text{ vs} 97.6 \text{ fb}^{-1})$
 - **Combined** Run 2 + Run 3 limits **stronger by factor 2**
- For the RPV SUSY model X
 - Limits set on $\sigma(\widetilde{qq})B(\widetilde{q} \rightarrow q\widetilde{\chi}^0_1)$
 - Limits on $\sigma(\tilde{q}\tilde{q})$ significantly stronger than previous CMS (Run 1) limits

Mangesh Sonawane | La Thuile 2024

08-03-2024

Comparison to other LLP searches : $H \rightarrow XX$

 $\int dk \prod_{\substack{\text{Doktoratskolleg Particles and Interactions
 }$ Instruct FUR HOCHENERGIEPHYSIK

 Objective State Sta

Best constraints to date in B(H \rightarrow XX) in broad range of $c\tau$ (X) for m(X) > 10 GeV

08-03-2024

Mangesh Sonawane | La Thuile 2024

<u>CMS summary plots</u>

Summary

Innovation in trigger strategy allowed CMS to explore new BSM territory already with data from the first year of LHC Run 3 : **First search for new physics at 13.6 TeV**, with 36.7 fb⁻¹ of data collected in 2022.

- X Improves upon previous Run 2 search by a **factor 2x to 4x sensitivity gain driven by new triggers**
 - X At L1 Trigger : new algorithms implemented for displaced dimuons
 - X At HLT : new dimuon paths with lower pT, and displacement thresholds to reject prompt muons
- × No excesses observed.
- Results combined with Run 2 data for Dark Photon model
 - **X** Best constraints to date to $B(H \rightarrow Z_n Z_n)$ in broad range of $c\tau(Z_n)$ for $m(Z_n) > 10$ GeV
 - **Comparable or better than Run 2** with despite only modest integrated luminosity.
- × Significant improvements in constraints to $\sigma(\tilde{q}\bar{q})$ in RPV SUSY

Submitted to JHEP, available on <u>arXiv : 2402.14491</u>

HEPData : https://www.hepdata.net/record/ins2760892

References

- 1. CMS Collaboration, "Search for long-lived particles decaying to a pair of muons in pp collisions at √s=13.6 TeV with 2022 data", <u>https://cds.cern.ch/record/2889915</u>
- 2. CMS Collaboration, "Search for long-lived particles decaying to a pair of muons in proton-proton collisions at $\sqrt{s} = 13$ TeV", <u>http://dx.doi.org/10.1007/JHEP05(2023)228</u>
- 3. Curtin et al., "Illuminating dark photons with high-energy colliders", <u>https://doi.org/10.1007/JHEP02(2015)157</u>
- 4. Strassler and Zurek, "Discovering the Higgs through highly-displaced vertices", https://doi.org/10.1016/j.physletb.2008.02.008

Backup