Diboson production in the SMEFT from gluon fusion

Marion Thomas

University of Manchester

Les Rencontres de Physique de la Vallée d'Aoste 7/03/24

Based on JHEP11 (2023)132 In collaboration with A. Rossia and E. Vryonidou

Why study diboson production from gluon fusion?

 $gg \rightarrow HH, ZH, ZZ, WW$

 $gg \rightarrow HH$: probes Higgs trilinear coupling

The Higgs can teach us about the top

Diboson sensitivity to top couplings

Top loops: probe poorly constrained Higgs and top operators

7/03/24

<u>M. Thomas</u>

Growing helicity amplitudes in $gg \rightarrow ZZ$

- Calculated analytical helicity amplitudes with **1 insertion of dim-6 SMEFT operators**.
- Studied high-energy behaviour of amplitudes \rightarrow Which operators grow with energy?

Growing helicity amplitudes in $gg \rightarrow ZZ$

- Calculated analytical helicity amplitudes with 1 insertion of dim-6 SMEFT operators.
- Studied high-energy behaviour of amplitudes \rightarrow Which operators grow with energy?

ī					lllr	7	
	$\lambda_{g_1},\lambda_{g_2},\lambda_{Z_1},\lambda_{Z_2}$	$\mathcal{O}_{arphi B}$	${\cal O}_{arphi W}$	$\mathcal{O}_{arphi G}$		-	
	+, +, +, +	$m_t^2 \Big[\log \Big(\frac{s}{m_t^2} \Big) - i \pi \Big]^2$	$\left m_t^2 \left[\log \left(\frac{s}{m_t^2} \right) - i\pi \right]^2 \right $	_	lele		
	+, +, -, -	$m_t^2 \Big[\log \big(\frac{s}{m_t^2} \big) - i\pi \Big]^2$	$m_t^2 \left[\log \left(\frac{s}{m_t^2} \right) - i\pi \right]^2$	_	lle		
	+, +, 0, 0	_	-	$s {v^2 \over m_Z^2}$		in the second se	
1	and the second s						
-	M Thomas		7/03/74			ς	

7/03/24

D

M. Thomas

03/24

 \rightarrow Motivates more detailed studies of $gg \rightarrow ZZ$

homas

Helicity amplitudes in $gg \rightarrow ZH$

ightarrow Focus on poorly constrained operators

ightarrow Logarithmic growth in the helicity amplitudes

$igar{\lambda_{g_1},\lambda_{g_2},\lambda_H,\lambda_Z}$	$\mathcal{O}_{arphi t}$	${\cal O}^{(-)}_{arphi Q}$	\mathcal{O}_{tarphi}
+, +, 0, 0	$rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\mathrm{log}ig(rac{s}{m_t^2}ig) - i\pi \Big]^2$	$\left[\left. rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \! \left[\log\!\left(rac{s}{m_t^2} ight) - i\pi ight]^2 ight.$	$\left[\frac{m_t v^2 e g_s^2}{32\sqrt{2}\pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi\right]^2\right]$

Helicity amplitudes in $gg \rightarrow ZH$

ightarrow Focus on poorly constrained operators

ightarrow Logarithmic growth in the helicity amplitudes

See also: Gauld, Haisch, and Schnell, JHEP01(2024)192

Why do the current operators grow?

Flat direction in $gg \rightarrow ZH$

We are only sensitive to
$$c_{\varphi Q}^{(-)} - c_{\varphi t} + \frac{c_{t \varphi}}{y_t}$$
 \rightarrow exact degeneracy

Can measuring $pp \rightarrow ZH$ improve the bounds on Higgs and top operators?

Probed by $gg \rightarrow ZH$ Probed by $qq \rightarrow ZH$

M. Thomas

About the analysis

Used $qq \rightarrow ZH$ analysis by Bishara, Englert, Grojean, Panico and Rossia, arXiv:2208.11134. Predictions obtained with Madgraph in the presence of one operator at a time.

Categ	gories	$p_{T,\min} \in$		
0 lonton	boosted	$\{0, 300, 350, \infty\}$		
0-1601011	resolved	$\{0, 160, 200, 250, \infty\}$		
2 lonton	boosted	$\{250,\infty\}$		
2-1ept011	resolved	$\{175, 200, \infty\}$		

 $p_{T,\min} = \min\{p_T^Z, p_T^H\}$

Background processes 0-lepton: $v\bar{v}b\bar{b}, t\bar{t}, vlb\bar{b}$ 2-lepton: $l^+l^-b\bar{b}$

NLO effects

 $qq \rightarrow ZH$: simulated at NLO in QCD $gg \rightarrow ZH$: rescaled by SM k-Factor

HL-LHC projected bounds from $pp \rightarrow ZH$

(03/24

M. Thomas

HL-LHC projected bounds from $pp \rightarrow ZH$

ightarrow Motivates inclusion of $pp \rightarrow ZH$ in global fits

What about CP-odd operators?

homas

Preliminary

So far only considered CP-even operators \rightarrow Extension of the study to CP-odd

/03/24

Miralles, MT, Vryonidou, in preparation

Conclusion

 $gg \rightarrow HH, ZH, ZZ, WW$ help us to study different Higgs and top properties.

In the SMEFT, these processes can probe poorly constrained Higgs and top operators.

 $pp \rightarrow ZH$ gives competitive constraints on some third-generation operators \rightarrow motivates precision measurements and inclusion in global fits.

 \rightarrow Extension of this study to CP-odd SMEFT operators

