Status of Lepton Flavour Violation searches in B decays at LHCb

Lisa Fantini on behalf of the LHCb Collaboration University and INFN Perugia

LA THUILE 2024

Les Rencontres de Physique de la Vallée d'Aoste

6th March 2024

Motivations

- Lepton flavour conservation: accidental symmetry in the Standard Model (SM)
 → general motivation for these searches
- Violated in neutral sector via neutrino oscillations
- LFV for charged leptons expected in SM with massive neutrinos:
 - Small branching ratios (~ 10^{-50})
- \rightarrow observation of charged LFV processes would be a clear sign for New Physics (NP)
- \rightarrow several extensions of SM predict LFV

LHCb experiment

LHCb provides ideal environment for searches of LFV in B meson decays [Int. J. Mod. Phys. A 30, 1530022 (2015)]

• Forward spectrometer $\rightarrow b\overline{b}$ produced at low angle

- Excellent vertex resolution and tracking
- Good PID

On the menu today

- Search for $B^+ \to K^+ \tau^+ \mu^-$ [JHEP 06 (2020) 129]
- Search for $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$ and $B_s^0 \rightarrow \phi \mu^{\pm} e^{\mp}$ [JHEP 06 (2023) 073]
- Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ [JHEP 06 (2023) 143]

Data: full LHCb dataset (Run1 + Run2) • Run 1: $\int \mathcal{L} = 3 f b^{-1}$ at $\sqrt{s} = 7 - 8 \text{ TeV}$ • Run 2: $\int \mathcal{L} = 6 f b^{-1}$ at $\sqrt{s} = 13 \text{ TeV}$ = $9 f b^{-1}$

• Run 2:
$$\int \mathcal{L} = 6 f b^{-1}$$
 at $\sqrt{s} = 13$ TeV

LFV analysis strategy at LHCb

- Signature: event excess in invariant mass spectrum
- Measurements normalized to channel with same topology of searched decay

$$N_{signal} = N_{norm} \frac{BR(signal) \epsilon_{signal}}{BR(norm process) \epsilon_{norm}}$$

• Multivariate analysis for combinatorial background reduction

 $B^+ \to K^+ \tau^+ \mu^-$

No SM predictions: $BR \sim 10^{-5} - 10^{-6}$ [JHEP 10 (2018) 148, Phys. Rev. D 96, 115011]

Final state: $K^-K^+\mu^-\tau^+$

Strategy:

- **τ** reconstruction:
 - 4-momentum indirectly reconstructed using B^+ from $B_{s2}^{*0} \rightarrow B^+K^-$ (1% of B^+ production)
 - Mass constrains on B_{s2}^{*0} and B^+
 - Inclusive τ decay
 - \rightarrow search for a peak at m_{τ}^2 in m_{miss}^2 distribution
- Background reduction:
 - Additional charged track (t^+) consistent with τ decay
 - BDT to suppress combinatorial background

 $B^+ \to K^+ \tau^+ \mu^-$

Missing mass fit:

Simultaneous fit in four bins of BDT output

Background: from same-sign kaons data sample

Signal:

- B^+ from B_{s2}^{*0} decay
- B^+ not from B_{s2}^{*0} decay

$B^+ \to K^+ \tau^+ \mu^-$

Limit on branching ratio

$$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 3.9 (4.5) \cdot 10^{-5}$$

at 90(95)% confidence level

- Belle experiment limit: $\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 0.59 \times 10^{-5} (90\% \text{ CL})$ [PRL 130, 261802 (2023)]
- Also limits on decay via scalar or pseudoscalar operators $(O_S^{(\prime)} \text{ or } O_P^{(\prime)})$ [Eur. Phys. J. C 76, 134 (2016)]

 $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \rightarrow \phi \mu^{\pm} e^{+}$

No SM predictions: $BR \sim 10^{-7}$ [Phys. Rev. D 92, 054013]

Final states: $K^+\pi^-\mu^\pm e^\mp$ and $K^+K^-\mu^\pm e^\mp$ Strategy: ϕ

- $B^0 \rightarrow K^{*0}\mu^{\pm}e^{\mp}$ treated separately depending on charge configuration of $K^+\mu$ (NP and backgrounds differ between charge configurations)
- $K^+\pi^-(K^+K^-)$ invariant mass required close to nominal $K^{*0}(\phi)$ mass
- Background reduction:
 - vetoes on misidentified *B* decays and semileptonic cascades involving *D* mesons
 - BDT to suppress combinatorial background
 - requirements on particle identification to suppress double misidentification $(B^0_{(s)} \rightarrow (K^{*0}/\phi)\pi^+\pi^-)$

$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp} \text{ and } B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$

Invariant mass fit:

Background:

- some backgrounds can pass vetoes
 → modelled from simulations
- combinatorial background measured from same-sign leptons data samples

Signal: shape scaled to 5×10^{-8} branching ratio

[JHEP 06 (2023) 073]

$$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp} \text{ and } B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$$

 K^{*0} channel: limit improved wrt previous searches (Belle: $O(10^{-7})$) [PRD 98, 071101(R) (2018)]

 ϕ channel: first limit on semileptonic LFV B_s^0 decay

Also limits on parameters of two NP models: scalar model, left-handed model [EPJC 76 (2016) 134]

$$B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$$

No SM predictions: $BR \sim 10^{-6}$ [Phys. Rev. D 92, 054013]

Final state: $K^{\pm}\pi^{\mp}$ $\pi^{+}\pi^{-}\pi^{\pm}\nu_{\tau}(\pi^{0})\mu^{\mp}$ Strategy: τ reconstruction:

- τ leptons decay undetected \rightarrow reconstructed from decay products
- ν_{τ} and π^0 not explicitly reconstructed \rightarrow missing momentum
- $\rightarrow m_{K^*\tau\mu}$ does not peak at B^0 mass

$$\longrightarrow m_{corr} = \sqrt{p_{\perp}^2 + m_{K^*\tau\mu}^2 + p_{\perp}}$$

missing momentum perpendicular to B⁰ direction

Background reduction:

- Two BDT to suppress: combinatorial background, charmed mesons decays identified as τ
- Requirements on particle identification and intermediate masses, vetoes on physical backgrounds via *D* mesons

[JHEP 06 (2023) 143]

 $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

[JHEP 06 (2023) 143]

Previous LFV results at LHCb

Process	Upper limit	Data	Reference		
$B^+ \to K^+ \mu^- e^+$ $B^+ \to K^+ \mu^+ e^-$	$7.0(9.5) \times 10^{-9} at 90(95)\% CL$ $6.4(8.8) \times 10^{-9} at 90(95)\% CL$	3 fb ⁻¹	<u>Phys. Rev. Lett.123 (2019)</u> 241802		
$ \begin{array}{c} B^0 \rightarrow \mu^{\pm} \tau^{\mp} \\ B^0_{(s)} \rightarrow \mu^{\pm} \tau^{\mp} \end{array} $	$1.4 \times 10^{-5} at 95\% CL$ $4.2 \times 10^{-5} at 95\% CL$	3 fb ⁻¹	<u>Phys. Rev. Lett. 123 (2019)</u> <u>211801</u>		
$B^+ \rightarrow e^{\pm} \mu^{\mp}$	$1.0(1.3) \times 10^{-9} at 90(95)\% CL$	3 fb ⁻¹	<u>JHEP 03 (2018) 078</u>		

Future perspectives

Further searches for LFV processes possible at LHCb, new analyses in progress:

- Already searched decays with more statistics:
 - $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$ (Run 2 data)

- Decays never searched at LHCb:
 - $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$ (Run 1 + Run 2 data)
 - $B^+ \rightarrow \pi^+ \mu^\pm e^\mp$ (Run 1 + Run 2 data)
 - Searches for Heavy Neutral Leptons (HNLs):

 $B^+_{(c)} \rightarrow \mu^+ HNL(\rightarrow e^{\pm}\pi^{\mp})$

→ massive right-handed neutrinos, predicted by NP theoretical models (previous results on HNL's: <u>Phys. Rev. Lett. 112 (2014) 131802</u>, <u>Phys. Rev. Lett. 108 (2012) 101601</u>, <u>Phys. Rev. D85 (2012) 112004</u>)

Summary

- LFV provides interesting probe for NP
- Active field at LHCb \rightarrow constraints on many models
- No evidence for LFV yet, but stringent limits set
- Several analyses with current data ongoing
- New possibilities with Run 3 data (more statistics, detector upgrade, new channels)

Thank you for the attention!

Backup slides

Charged leptons at LHCb

Muons:

- Easy to trigger on (dedicated muon chambers)
- Excellent dimuon mass resolution

Electrons:

- High occupancies in the calorimeter require tighter thresholds wrt muons
- Energy loss due to bremsstrahlung affects \rightarrow most of electrons emit one energetic photon before magnet (recovery ~50% efficient)

Taus:

- Short lifetime (0.3 ps), indirect detection
- Missing energy from neutrinos

ECAI

Systematic uncertainties

Dominant sources:

- $B^+ \rightarrow K^+ \tau^+ \mu^-$
 - Choice of background model
- $B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp} / B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$
 - BR of normalization channels $B^0 \to J/\psi (\to \mu^+ \mu^-) K^{*0}$ and $B^0_s \to J/\psi (\to \mu^+ \mu^-) \phi$
 - Effective B_s^0 decay time
- $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$
 - Background control region choice

Statistical uncertainty dominant wrt systematic uncertainty in all these measurements!

$B^+ \rightarrow K^+ \tau^+$: analysis details

- Normalization channel: $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$
- *B*⁺ energy obtained from:

$$E_B = \frac{\Delta^2}{2E_K} \frac{1}{1 - (p_K/E_K)^2 \cos^2 \theta} [1 \pm \sqrt{d}]$$

where

$$d = \frac{p_K^2}{E_K^2} \cos^2 \theta - \frac{4m_B^2 p_K^2 \cos^2 \theta}{\Delta^4} \left(1 - \frac{p_K^2}{E_K^2} \cos^2 \theta\right)$$
$$\Delta^2 = m_{BK}^2 - m_B^2 - m_K^2$$

lower energy real solution considered

 Main background: partially reconstructed B decays (additional charged tracks combined with signal Kµt). Signal: no extra tracks (except 3 prong dacay) -> charged isolation variable for signal-background separation

$B^+ \rightarrow K^+ \tau^+ \mu^-$: analysis details

- BDT trained on:
 - SS kaons sample in mass range around tau mass (bkg proxy)
 - MC simulations (signal proxy)
- **BDT inputs** chosen to distinguish additional tracks coming from τ decays from various sources of background
- No peaky backgrounds in the signal region: extensive studies performed
- Fit:
 - Signal: hyperbolic distribution (shape parameters from simulations)
 - Background shape: polynomial fit of SS kaons data sample

 $B^+ \rightarrow K^+ \tau^+ \mu^-$: NP models

• Default limits assume a uniform phase space model (PHSP)

NP models:

- Decay via vector or axial operators $(O_9^{(\prime)}, O_{10}^{(\prime)}) \rightarrow$ same limits as PHSP
- Decay via scalar or pseudoscalar operators $(O_S^{(\prime)}, O_P^{(\prime)}) \rightarrow$ obtained limits:

 $\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 4.4 \times 10^{-5}$ at 90% CL and $~< 5.0 \times 10^{-5}$ at 95% CL

$$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$$
 and $B_s^0 \rightarrow \phi \mu^{\pm} e^{\mp}$: analysis details

Normalization channels: $B^0 \to J/\psi (\to \mu^+ \mu^-) K^{*0}$ and $B_s^0 \to J/\psi (\to \mu^+ \mu^-) \phi$

$$\mathcal{B}_{\text{sig}} = \underbrace{\frac{\mathcal{B}_{\text{norm}}}{N_{\text{norm}}} \times \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}}}_{= \alpha} \times N_{\text{sig}}$$

Fit functions:

- Signal: sum of two Crystal Balls
- Physical backgrounds passing the selection: model with KDE based on simulation $B^0 \rightarrow D_2^*(2460)^- (\rightarrow \overline{D}^0 (\rightarrow K^+ l^- \overline{\nu}_l) \pi^-) l'^+ \nu_{l'}, B_s^0 \rightarrow D_{2s}^*(2573)^- (\rightarrow \overline{D}^0 (\rightarrow K^+ l^- \overline{\nu}_l) K^-) l'^+ \nu_{l'}, B^+ \rightarrow \overline{D}^0 (\rightarrow K^+ l^- \overline{\nu}_l) l'^+ \nu_{l'} + random \pi^-$
- Combinatorial background: single exponential

$$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$$
 and $B^0_s \rightarrow \phi \mu^{\pm} e^{\mp}$: NP models

• Default limits assume a uniform phase space model (PHSP)

NP models:

Left-handed model: leptoquark inspired model, $C_9^{e\mu} = C_{10}^{e\mu} \neq 0$ Contributing LVF operators:

$$O_9^{e\mu} = (e/g)^2 (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu e)$$

$$O_{10}^{e\mu} = (e/g)^2 (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu\gamma^5 e)$$

 $C_i^{e\mu}$ = lepton flavour violating Wilson coefficients

Scalar model: $C_s^{e\mu} \neq 0$

chosen as a counterpart, underlining the non-negligible impact of the choice of signal model on kinematics and efficiency

Scalar operator:

$$O_S^{e\mu} = (e/g)^2 (\bar{s}P_L b)(\bar{\mu}e)$$

NP models can result in very different decay kinematics and differential decay rates → PHSP MC reweighted

			-	
Unner	Mode	Left-handed	Scalar	
opper	$B^0 \rightarrow K^{*0} \mu^+ e^-$	6.7(8.3)	8.4 (10.2)	
limits at	$B^0 \rightarrow K^{*0} \mu^- e^+$	8.0(9.5)	9.9(11.5)	$+ \times 10^{-9}$
90(95)% CL	$B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}$	12.0(13.9)	14.7(17.0)	
	$B_s^0 \rightarrow \phi \mu^{\pm} e^{\mp}$	16.5(20.5)	18.8(23.1)	

reduced signal efficiency (increased limits on signal branching fraction)

$B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$: analysis details

<u>Possible strategy:</u> Fully Corrected Mass of B

- $p(K^{*0})$ and B vertexing used to determine $p_T(\tau)$ (with respect to B direction)
- τ and neutrino momenta form τ vertexing
- B momentum by fixing one of the lepton masses

<u>But:</u>

- τ decay vertex not well measured for high boost
- Sinus of angle between $K^{*0}\mu$ system and τ directions of flight not precisely known

Applied strategy:

$$P_{B} = P_{B}u_{B} = P_{\tau}u_{\tau} + P_{y}u_{y}$$

$$\Rightarrow P_{B}u_{B} = P_{y}u_{y} + \frac{P_{\tau\perp}}{\sin(\vartheta_{B\tau})}u_{\tau}$$

$$= P_{y}(u_{y} + \frac{\sin(\vartheta_{yB})}{\sin(\vartheta_{B\tau})}u_{\tau})$$

$$\Rightarrow P_{B} = P_{y}(u_{y} \cdot u_{B} + \frac{\sin(\vartheta_{yB})}{\sin(\vartheta_{B\tau})}u_{\tau} \cdot u_{B})$$

$$\Rightarrow P_{B} = P_{y}(\cos(\vartheta_{yB}) + \frac{\sin(\vartheta_{yB})}{\sin(\vartheta_{B\tau})}\cos(\vartheta_{B\tau}))$$

$$\Rightarrow P_{B} = P_{y}(\cos(\vartheta_{yB}) + \frac{\sin(\vartheta_{yB})}{\sin(\vartheta_{B\tau})}\cos(\vartheta_{B\tau}))$$

Ok for 60% of reconstructed events \rightarrow mass correction needed

 $m_{corr} = \sqrt{p_{\perp}^2 + m_{K^* \tau \mu}^2} + p_{\perp}$ (Minimal Corrected Mass)

 p_{\perp} = momentum sum, transverse to B flight direction, of reconstructed tracks = transverse momentum sum of the missed particles

$B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$: analysis details

Normalization channels: $B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) D^+ (\rightarrow K^+ K^- \pi^+)$

Vetoes on:

$$B^0 \to D^{*-} \mu^+ \nu$$
, with $D^{*-} \to \bar{D^0} \pi$ and $\bar{D^0} \to K^+ \pi^- \pi^+ \pi^-$

$$B^0 \to D^{*-} \tau^+ \nu$$
, with $D^{*-} \to \bar{D^0} \pi$, $\bar{D^0} \to K^+ \mu^- \nu$ and $\tau^+ \to \pi^+ \pi^- \pi^+ \nu$

Fit functions:

$$P_{\rm tot} = Y_{\tau_{3\pi}} P_{\tau_{3\pi}} + Y_{\tau_{3\pi\pi^0}} P_{\tau_{3\pi\pi^0}} + Y_{\rm bkg} P_{\rm bkg}$$

- Signal: double sided Crystal Balls
- Background: double sided Crystal Ball

