A SNEAK PEEK AT XENONnT IONIZATION-ONLY ANALYSIS

Jianyu Long On Behalf of the XENON Collaboration The University of Chicago

La Thuile 2024 - Les Rencontres de Physique de la Vallée d'Aoste March.5.2024

THE UNIVERSITY OF CHICAGO

The XENONnT Experiment

- ◊ 29 institutions worldwide
- \diamond \sim 200 members

Jianyu Long (jylong@uchicago.edu)

Liquid Xenon TPC Working Principle

 $w=13.7 \ eV/{\rm quanta}$

 g_1/g_2 : Photoelectron (PE) per quanta (γ/e^-)

♦ Signals

- ★ Primary scintillation signal (S1)
- ★ Secondary scintillation signal (S2)

Interaction Reconstruction

- ★ S2 hit pattern → Interaction (x, y)
- $\star~$ S1-S2 arrival time difference $\rightarrow~$ Interaction z
- ★ Energy Reconstruction $E = w \left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$

> Particle Discrimination

- * Electronic Recoil (β , γ , light DM, etc.)
- * Nuclear Recoil (neutron, WIMP-like, $CE\nu NS$)

XENONnT Scientific Results

[Phys. Rev. Lett. 131, 041003 (2023)]

[Phys. Rev. Lett. 129, 161805 (2022)]

♦ Blind search

- $\diamond~$ Low energy threshold ($\sim 1~keV~$ ER and $\sim 3.3~keV~$ NR)
- Robust background model
- ◊ No significant signal-like excess

Motivation for Ionization (S2)-only Analysis

The S1 yield (~ 10 PE/keV, measured with 5.5 $MeV \alpha$ from ²²²Rn) is much smaller than the S2 yield (~ 250 PE/keV)

ightarrow To probe lower energy, we are forced to rely on only S2s

Traditional S2-only Analysis

- $\diamond~$ Target S2 range: $5~e^-$ to $\sim 100~e^-$
- ◊ Sensitive to DM candidates interacting both via NR or ER

[Phys. Rev. Lett. 123, 251801 (2019)]

Few Electron Analysis

 $\diamond~$ Target S2 range: $1~e^-$ to $5~e^-$

1

 Sensitive to DM candidates interacting via ER (due to uncertainty in quenching factor at lowest energies for NR)

[Phys. Rev. D 106, 022001]

 I will only introduce the methodology today, with some preliminary XENONnT results

Basics of the Few Electron Analysis

- Energy depositions below S1 detection threshold (S2-only)
 - 1. Radioactive contaminants
 - 2. (Solar) Neutrino
 - 3. Light DM/other BSM
- Instrumental Backgrounds
 - 1. Spurious emission of single/few electrons from electrodes
 - 2. Delayed electrons (DEs) following large (primary) S2s (pS2s)

No S1 \rightarrow No z information

DEs: Spatial Correlation with pS2

[Phys. Rev. D 106, 022001(2022)]

La Thuile 24

DEs: Time Correlation with pS2

Published 1T result

[Phys. Rev. D 106, 022001(2022)]

Hypotheses of the Delayed Electrons

1. Photoionization from pS2 photons

- * Short time gap with their preceding pS2s (< 1 full drift time, $\sim 23 \ \mu s$)
- Large photoionization can cause further photoionization iteratively
- Weak spatial and temporal correlation with their preceding pS2s
- 2. Slow extraction at the interface
 - Long time gap with their preceding pS2s (up to seconds)
 - Strong spatial and temporal correlation
- 3. (?) Trapped by electronegative impurities in liquid

Evidence of Trapping by Impurities

- A strong correlation between the rate of position-correlated single electron (SE) and the pS2 drift time was observed
- The rate of the position-uncorrelated SE is relatively constant with respect to the drift time of the preceding pS2s

Longer drift time \rightarrow higher chances to attach \rightarrow higher DE rates observed \Rightarrow There is a significant in-liquid component, likely due to trapping

S2-Only Analysis Veto Strategy

- \diamond Better purity (electron lifetime > 15 ms)
 - $\rightarrow~$ Less electronegative impurities
- less radioactive contaminants
 - \rightarrow Lower pS2s rate
 - \rightarrow Less low-energy physical depositions

- $\diamond~{\sim}3{\times}$ larger active target mass than 1T
- $\diamond~{\sim}10{\times}$ overall lower DE rate compared to 1T
- $\diamond~{\sim}30{\times}$ more calibration data and ${\sim}20{\times}$ larger exposure compared to 1T

XENON1T Results

XENONnT Results Preliminary

 $\diamond~$ Rates were calculated from a getter-bypassed calibration period after the SR0 scientific run ($\sim 1/7~{\rm exposure})$

♦ The physics runs are still blinded

Thanks!

Backup Slides

◊ pS2 size

- 1. On average, a constant fraction of electrons from the pS2 electron cloud is trapped in liquid throughout the drift region ($\sim 10^{-8} cm^{-2}$).
- On the contrary, the position-uncorrelated SE rate is independent of pS2s and thus has a dropping trend as the size of pS2s increases

Only $1e^-$ DEs plotted

◊ pS2 size

- On average, each e[−] in the pS2 deposits a constant amount of position-correlated DE SEs (~ 10⁻⁸cm⁻²). Such a rate is independent of the size of the pS2
- On the contrary, the position-uncorrelated DE SEs are constant per pS2, disregarding the size of the preceding pS2s

Only $1e^-$ DEs plotted

A sample of DE train after a large S2. The photoionization-cluster within 1 full drift time of the large S2 is shown in the zoomed-in picture.

XENONnT Detectors

- ♦ Muon veto (nT updates)
 - \star Water Cherenkov neutron veto
- ♦ Neutron veto (inherited from 1T)
 - ★ Gadolinium-doped water detector

- Material Screening
- Radon and Krypton distillation columns
- Gas and liquid xenon Recirculation Systems
- Muon/Neutron Veto tagging
- Xenon self-shielding

[Eur. Phys. J. C 77, 275 (2017)]
[Eur. Phys. J. C 82, 599 (2022)]
[Eur. Phys. J. C 82, 860 (2022)]
[Eur. Phys. J. C 82, 1104 (2022)]

XENON Purification System - Radon Column

[Eur. Phys. J. C (2022) 82:1104(2022)]

²²²Rn is trapped in LXe at the bottom of the column and decays away while LXe is reboiled and circulated through the rest of the purification system – lossless

 \diamond Targeting ²²²Rn (daughter isotope ²¹⁴Pb is a dominant background)

 \diamond Lowest $^{222} \rm Rn$ background ever: $< 1 \mu Bq/kg$ (SR1, liquid+gas mode), $1.8 \mu Bq/kg$ (SR0, gas mode)

Jianyu Long (jylong@uchicago.edu)

La Thuile 24

XENON Purification System - LXe Purification

[Eur. Phys. J. C 82, 860 (2022)]

- ♦ Targeting electronegative impurities
- \diamond Boosted electron lifetime to greater than 10ms for XENONnT (8.6 ton)

XENON Purification System - Kryton Column

[Eur. Phys. J. C 77, 275 (2017)] [Prog. Theor. Exp. Phys. 2022 053H01]

 \diamond Allows ³⁷Ar as a calibration source