

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

on behalf of the LEGEND collaboration

La Thuile 2024

How can we discover the neutrino's true nature?

Majorana

Raoul Cesarano – La Thuile 2024

What to search for

What to search for

What to search for

Gran Sasso National Laboratory (LNGS)

3600 m water equivalent Muon flux reduced of a factor 10⁶

90 tons of liquid Ar 200 kg of enriched Ge Stably taking data since 1 yr $T_{1/2}^{0\nu\beta\beta} > 10^{27}$ yr @ 90% CL (5 yrs)

336 detectors of 3 kg avg. mass 1000 kg of Ge detectors First data in 2030 $T_{1/2}^{0\nu\beta\beta} > 1.4 \cdot 10^{28}$ yr @ 90% CL (10 yrs)

Single Site Event (SSE)

h

Single Site Event (SSE)

Liquid Ar coincidence

Raoul Cesarano – La Thuile 2024

iquid Ar a pippidan pa

Liquid Ar coincidence

Single Site Event (SSE)

Liquid Ar coincidence

Multi Site Event (MSE)

Raoul Cesarano – La Thuile 2024

How signals generate in Germanium detectors

PSD preliminary performance

²¹²Bi (FEP)

- DEP are used as proxy for SSE
- FEP and SEP for MSE
- PSD tuned to 90% survival at ²⁰⁸TI DEP

Designed for an unambiguous discovery

Thank you for your attention

BACKUP SLIDES

https://doi.org/10.48550/arXiv.1610.06548

Ge advantages

- The source is embedded in the detector, providing high efficiency
- Best energy resolution, FWHM better than 0.1% at $Q_{\beta\beta}$ = 2039 keV
- Highly radio-pure
- High density
- PSD capabilities
- Enrichment up to 88% in ⁷⁶Ge

Ge disadvantages

- Low $Q_{\beta\beta}$, below the ^{208}TI line of 2615 keV
- Rather expensive enrichment process
- Low value of the phase space factor respect to other isotopes. This implies the need to reach a longer $T_{1/2}^{0\nu}$ to probe a given $m_{\beta\beta}$ value

Isotope	isotopic abundance $(\%)$	$Q_{\beta\beta}$ [MeV]
48 Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
^{100}Mo	9.6	3.035
^{116}Cd	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
136 Xe	8.9	2.459
¹⁵⁰ Nd	5.6	3.371

HPGe detectors geometries

M= 2,5 kg

Bore hole \rightarrow depletion of a larger volume \rightarrow large mass detector

D=8 cm, H = 3 cm, M= 0,8 Kg Mass limited down to 1 kg Smaller p+ area Lower noise Better ΔE Better PSD The *well* allows depleting the detector at the usual operational voltage of about 4000 V with a mass above 3 kg

Good PSD capabilities

LEGEND timeline

Energy resolution preliminary performance

Overall improvement in energy resolution $@Q_{\beta\beta}$

Energy scale very stable between calibrations

Neutron moderator

0vββ experiments comparison

