Direct Dark Matter search with solid state detectors

Natalia Di Marco Gran Sasso Science Institute and National Gran Sasso Laboratories (INF G S S I GRAN SASSO SCIENCE INSTITUTE

ISTITUTO Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL GRAN SASSO

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile, 3-9 March 2024

OUTLINE

✓ Direct DARK MATTER search panorama

- ✓ DARK MATTER candidates
- ✓ Technologies and methods
 - ✓ NaI-based experiment family
 - ✓ Low mass frontier
 - ✓ Very low mass frontier
- ✓ Conclusions

Direct DARK MATTER search - Panorama

Direct DARK MATTER search - Panorama

DARK MATTER candidates and detection strategies

DARK MATTER candidates and detection strategies

Direct Dark Matter search: methods and technologies

Nal-based experiment family

Nal-based experiment family - DAMA

- DAMA/LIBRA » 250 kg NaI(Tl) (Large sodium lodide Bulk for RAre processes)
- 232Th, 238U and 40K at level of 10-12 g/g
- Threshold = 0.5 keV
- 22 years of data taking, 2.89 ton x year exposure

• 13.7 σ C.L.

Nal-based experiment family

Astroparticle Physics European Consortium (APPEC) Recommendation:

"The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."

Nal-based experiment family – ANAIS/COSINE/SABRE

• 9 Nal(Tl) crystals (112.5 kg) @ CANFRANC (Spain)

- Phys. Rev. Lett. 123, 031301 (2019); J. Phys. Conf. Ser. 1468, 012014 (2020); 3 y: Phys. Rev. D 103, 102005 (2021)
- Sensitivity improved with machine-learning techniques:

incompatible with DAMA/LIBRA at 3.9(2.8) σ for [1-6]([2-6])keV

Nal-based experiment family – ANAIS/COSINE/SABRE

• 9 Nal(Tl) crystals (112.5 kg) @ CANFRANC (Spain)

- 2017 → today: 643.48 kg×y @ August 8, 2023
- Phys. Rev. Lett. 123, 031301 (2019); J. Phys. Conf. Ser. 1468, 012014 (2020); 3 y: Phys. Rev. D 103, 102005 (2021)
- Sensitivity improved with machine-learning techniques:

incompatible with DAMA/LIBRA at 3.9(2.8) σ for [1-6]([2-6])keV

- 106 Nal(Tl) crystals @Yang Yang lab (Korea) (2016→2023). Currently in upgrade + moving to Yemilab @ KOREA
- Nature 564, 83 (2018), Sci Adv. 2021 Nov 12;7(46):eabk2699 , Phys. Rev. D. 106, 052005
- No conclusive results yet (consistent with both DAMA and zero modulation)

Nal-based experiment family – ANAIS/COSINE/SABRE

• 9 Nal(Tl) crystals (112.5 kg) @ CANFRANC (Spain)

- 2017 → today: 643.48 kg×y @ August 8, 2023
- Phys. Rev. Lett. 123, 031301 (2019); J. Phys. Conf. Ser. 1468, 012014 (2020); 3 y: Phys. Rev. D 103, 102005 (2021)
- Sensitivity improved with machine-learning techniques:

incompatible with DAMA/LIBRA at 3.9(2.8) σ for [1-6]([2-6])keV

- 106 Nal(Tl) crystals @Yang Yang lab (Korea) (2016→2023). Currently in upgrade + moving to Yemilab @ KOREA
- Nature 564, 83 (2018), Sci Adv. 2021 Nov 12;7(46):eabk2699 , Phys. Rev. D. 106, 052005
- No conclusive results yet (consistent with both DAMA and zero modulation)

- SABRE goal is to search for annual modulation with two nearly identical NaI(TI) detectors in the Northern (LNGS-Italy) and Southern Hemispheres (Stawell – Australia)
- Crystals current result @LNGS: ~1 cpd/kg/keV background (goal 0.5 cpd/kg/keV)
- SABRE-South full detector deployment by end of 2024, SABRE-North new underground site outfitting by 2024
- SABRE expected to exclude/confirm annual modulation in 3-5 years of operation

Quencing factor values set the energy scale

$$QF(E) = \frac{L_{NR}(E)}{L_{ER}(E)}$$

DAMA: Na 30%, I 9%

- Energy dependence?
- Systematic uncertainties deriving from different measurement:
 - Procedure?
 - Non-linearity?
 - Tl concentration dependence?
 - Impurities?

•

. . .

N. Di Marco

N. Di Marco

Nal-based experiment family – COSINUS

Nal-based experiment family – COSINUS

Nal-based experiment family – COSINUS

Felix Kahlhoefer et al JCAPo5(2018)074

DAMA islands

 10^{1}

- COSINE-100 2021 (6307 kg d)

— this work - acceptance region (11.6 g d)

 10^{2}

 m_{χ} (GeV)

--- this work - ROI (11.6 g d)

N. Di Marco

 10^{3}

Cryogenic bolometers - CRESST

- Target: various crystal materials: CaWO4, Al2O3, LiAlO2, Si
- Sensor: W-TES at 15 mK
- Energy calibration with X-rays
- Energy threshold of O(10 eV)

Cryogenic bolometers - CRESST

- Target: various crystal materials: CaWO4, Al2O3, LiAlO2, Si
- Sensor: W-TES at 15 mK
- Energy calibration with X-rays
- Energy threshold of O(10 eV)

Detector A - CaWO4:

23.6 g exposure: 5.698 kgd Eth= 30.1 eV_{NR}

Al2O3 wafer detector: 0.6 g

exposure: 0.14 kgd Eth= 6.7 eV_{NR}

LiAlO2 detector:

10.5 g exposure: 1.161 kgd Eth= 83.6 eV_{NR}

Si wafer detector:

0.35 g exposure: 55.06 gd Eth= 10.0 eV_{NR}

Cryogenic bolometers – SuperCDMS

HV detector \rightarrow low threshold

- Drifting charge carriers (e–/h+) across a potential (V_b) generates a large number of Luke phonons (NTL effect)
- Trade-off: no NR/ER discrimination
- $E_t = E_r + (N_{eh} \times e Vb)$
- $E_{th} \sim 60 \ eV_{nr}$

$\textbf{iZIP detector} \rightarrow \textit{low background}$

- Interleaved Z-sensitive Ionization and Phonon detector
- Prompt phonon and ionization signals allow for NR/ER event discrimination
- $E_{th} \sim 150 \ eV_{nr}$

Cryogenic bolometers – SuperCDMS

 $\textit{HV detector} \rightarrow \textit{low threshold}$

- Drifting charge carriers (e–/h+) across a potential (V_b) generates a large number of Luke phonons (NTL effect)
- Trade-off: no NR/ER discrimination
- $E_t = E_r + (N_{eh} \times e Vb)$
- $E_{th} \sim 60 \ eV_{nr}$

$\textbf{iZIP detector} \rightarrow \textit{low background}$

- Interleaved Z-sensitive Ionization and Phonon detector
- Prompt phonon and ionization signals allow for NR/ER event discrimination
- $E_{th} \sim 150 \ eV_{nr}$

SuperCDMS@SNOLAB

Initial payload: 24 detectors:

✓ *iZIP towers: 10 Ge + 2 Si crystals*

✓ HV towers: 8 Ge + 4 Si crystals

Ionization detectors

- Pixel array pixel 675 µm I Ionization Ζ Fully active volume 15 µm b) c) 1x100: a) $\sigma_{xy} \propto z$ σ_{xy} $\sigma_x \propto z$ x — Z y
- Operated @ O(100 k)
- 3D reconstruction of the interaction location
- Identification of particle type via cluster pattern
- Skipper CCD: Skipper read out consists in performing N uncorrelated measurements of the same pixel → subelectron readout noise
- O(20) eV_{ee}

х -

х -

Ionization detectors – DAMIC/SENSEI/OSCURA

Saffold@TAUP2023

DM-nucleus scattering panorama

K. SchaeffnerTAUP2023

DM-electron scattering panorama

The Low Energy Excess Problem

Observed in ALL type of experiment:

- above ground and in underground laboratories.
- *in cryogenic detectors and at room-temperature.*
- for TESs, NTDs, QETs, (Skipper) CCDs.
- for different materials (Si, CaWO4, Ge, Al2O3 ...).
- with significantly differing rates across detectors and experiments

The Low Energy Excess Problem

Observed in ALL type of experiment:

- above ground and in underground laboratories.
- in cryogenic detectors and at room-temperature.
- for TESs, NTDs, QETs, (Skipper) CCDs.
- for different materials (Si, CaWO4, Ge, Al2O3 ...).
- with significantly differing rates across detectors and experiments

Is DM?

- Excess rates do not scale with detector mass
- Excess rate decay with time

Most favorite hypotesis: STRESS from crystal, sensor or holding

23

CURRENT R&Ds for FUTURE VERY, VERY LOW MASS DM candidates

- TESSERACT
- SPLENDOR: narrow-gap semiconductors
- SPICE: polar crystals
- BULLKID
- DAREDEVIL (new!)
- MAGNETO-DM: magnetic sensors and diamonds
- Qubits
- Quantum devices
- Paleodetectors/Mineral detectors
- and many others...

TESSERACT

- TES read-out
- Zero-field → no dark currents
- Target: SPICE (polar crystals), HERALD (superfluid He)
- Threshold goal O(100 meV)

DAREDEVIL

DAREDEVIL: **DAR**k matt**E**r **DEVI**ces for Low energy detectors, a multi-target program for low mass DM search

- ZrTe5 (Dirac semimetal)
- CaAuAs (Weyl semimetal)
- Al (Superconductor)
- GaAs (Scintillator, polar crystal, small gap semiconductor)

Funded by the Research Italian Ministry (PRIN2022)

Institutions involved:

INRIM (Italian Institute for Metrology, sensor development)

CNR (Italian National Research Center, theoretical solid state studies)

LNGS, GSSI, UnivAQ --> (experimental astroparticle physics, theoretical and experimental solid state physics) National Cheng Kung University of Taiwan and Taiwan Semiconductor Manufacturing Company

DAREDEVIL White Paper to appear soon

DAREDEVIL

Multi- channel detection:

- radiative photons
- not radiative phonons + NTL
- charge electron/hole

high voltage electrodes

NTD

Phonon read out channerl: NTD sensor

Light read out channel: Mercury Cadmium Telluride (CdTeHg) layer sputtered on a Si substrate (stoichiometry tuned to achieve 0.2 eV gap suitable scintillation light from GaAs.

27

N. Di Marco

surface where the CdTeHs is deposited

Conclusions

- We did not find DM (yet)
- ... but trying to solve the DAMA puzzle
- New landscapes open:
 - ✓ Low mass and very low mass DM candidates well teorethical motivated
 - ✓ Solid state detectors play a crucial role
 - Explore new phace-space zones
 - More than one target needed to understand the nature of interaction
- Challenging search
 - ✓ QFs issue for Nal-based detecors
 - ✓ Low Energy Excess
 - ✓ New technologies to be developed
 - Mulitydisciplinarity! Solid state physicist are our new friends
 - Calibration
 - ✓ Backgroud
- A lot of fun...

To knew more:

Identification of Dark Matter (*IDM2024*) in L'Aquila (Italy), July 8-12 (<u>www.idm2024.eu</u>)
EXCESS2024 workshop: La Sapienza University (Rome, Italy), July 6

(https://agenda.infn.it/event/39007/)

Thank you!

- Specific target regions in the DMelectron cross section versus DM mass plane in which DM is produced with the observed relic abundance.
- For these benchmark models, DM interacts with both nuclei and electrons.
- When applicable, we show existing direct-detection bounds (light gray) and constraints from stellar cooling and the effective number of relativistic species (N_{eff}) (darker gray)

Nal-based experiment family ->

- Best fit modulation amplitudes compatible with zero at ${\sim} {\rm 1}\sigma$
- Best fit incompatible with DAMA/LIBRA at 3.9(2.8) σ for [1-6]([2-6])keV
- Sensitivity with 3 years data: 2.9 σ for [1-6] and [2-6] keV
- 5 σ sensitivity at reachin late 2025

- 9 Nal(Tl) crystals (112.5 kg) equipped with a **Mylar** window CANFRANC (Spain)
- 2017 → today: 643.48 kg×y @ August 8, 2023
- Phys. Rev. Lett. 123, 031301 (2019); J. Phys. Conf. Ser. 1468, 012014 (2020); 3 y: Phys. Rev. D 103, 102005 (2021)
- Sensitivity improved with machine-learning techniques.

- 106 Nal crystals Yang Yang lab
 (2016→2023). Now upgrade + moving to Yemilab
- Nature 564, 83 (2018), Sci Adv. 2021
 Nov 12;7(46):eabk2699, Phys. Rev.
 D. 106, 052005

Amplitude [dru]

Non-proportionality (nPR) in the light output

- · Non-proportional behavior of scintillation detectors are well known phenomena
- Investigation of nPR in Nal(TI): X-ray and Gamma (not for electron)
 - measurement using external radioactive source: ²⁴¹Am, ¹³³Ba, ¹⁰⁹Cd, and ¹³⁷Cs
 - internal radioactive in COSINE crystal: ²¹⁰Pb, ²²Na, and ⁴⁰K, cosmogenic: ¹²⁵I, ¹¹³Sn, and ¹⁰⁹Cd

QF determined using Eee calibrated at 59.54 keV \rightarrow Impact of nPR on the QFs?

CENTER FOR UNDERGROUND PHYSICS

Measurements of Quenching Factors for Nal(TI) scintillating crystal

18

plate

SABRE North

- Conceptual design report presented in July 2021, TDR due in summer 2024
- 3 x 3 matrix of cystals of ~ 5 kg mass each
- Fully passive shielding design: 15 cm copper + 80 cm PE
 - \rightarrow enough shielding power and negligible contribution to the total background
- Expected background o.5 cpd/kg/keV (with ZR) or 1 cpd/kg/keV (w/o ZR)

for muon detection

 \mathbf{m}

202

TAUP

G. D'Imperio,

SABRE South

Design: 7 crystals array of ~5-7 kg mass

- Vessel + LAB, PMTs, muon detector, DAQ electronics, Crystal insertion system ... all ready.
- Crystal procurement in synergy with SABRE North
- Highest purity crystals and largest active veto: 0.72 cpd/kg/keV

Cryogenic bolometers – SuperCDMS

	iZIP		HV	
	Ge	Si	Ge	Si
Number of detectors	10	2	8	4
Total exposure [kg·yr]	45	3.9	36	7.8
Phonon resolution [eV]	33	19	34	13
Ionization resolution [eVee]	160	180	-	-
Voltage Bias $(V_+ - V)$ [V]	6	8	100	100

HV detector \rightarrow low threshold Drifting charge carriers (e-/h+) across a potential (V_b) generates a large number of Luke phonons (NTL effect) Trade-off: no NR/ER discrimination $E_t = E_r + (N_{eh} \times e Vb)$ $E_{th} \sim 60 \ eV_{nr}$

iZIP detector → low background Interleaved Z-sensitive Ionization and Phonon detector Prompt phonon and ionization signals allow for NR/ER event discrimination $E_{th} \sim 150 \text{ eV}_{nr}$

Current 90% c.l. limits on DM-nucleon scattering and on the Migdal effect from DM-nucleus scattering

Current 90% c.l. limits on DM-electron scattering through a heavy (left) and ultr-light (right) mediator

Charge Coupled Devices

- After exposure of the active target and charge generations the readout take place
- A series of 3 voltage clocks create potential walls that are used to move the charges through the pixels
- In a vertical transfer one row of pixels is moved one row closer to the horizontal register
- The charge in the horizontal register is moved pixel-by-pixel to a readout amplifier
- The charge fall into the SW gate and then to the SN where it is measured

Charge Coupled Devices

- Using a floating gate as SN and replacing the bias VOG with a clock, permits a multiple nondestructive measurement of the charge packet
- The measurement error σ will decrease as $\sim \sqrt{\frac{1}{N_{skip}}}$
- Thus the 1/f amplifier low frequency noise is now subdominant
- For a large number N_{skip} of the resolution reaches sub-electron values
- But $t_{readout} \sim N_{skip}$

Ionization detectors - DAMIC

measurement (and rejection) of surface and bulk backgrounds: decay chains detected as spatially correlated, time separated energy clusters

Candidate ²¹⁰Pb decay chain

Ionization detectors - OSCURA

Oscura: Background control

Goal: 0.01 dru → Pathfinder experiments paving the way Decisions driven by simulations

Sources:

- Cosmogenic activation of Si and Cu
 - ³H in Si: Main bkgd (2 mdru/day at sea level) [PRD 102, 102006 \rightarrow <5 days on surface Can be baked out during fab! ("total" removal at 1000°C)

• Isotopic contamination on front-end electronics, cables and components near the sensors

Low radioactive flex cable [arXiv:2303.10862] Simulations of ²³⁸U, ²³²Th and ⁴⁰K

- \rightarrow 4cm of cable visible to CCDs
- \rightarrow Electronics behind inner shield (width>10cm)
- External backgrounds

 Outer shield: polyethylene
 Inner shield: ancient lead and
 electroformed copper

DAMIC-M cable	²³⁸ U [ppt]	²³² Th [ppt]
Commercial	2600 +/- 40	261 +/- 12
Customed	31 +/- 2	13 +/- 3

14 08/28/2023 Nate Saffold | The Oscura experiment

Ionization detectors - DAMIC

DAMIC-M@MODANE

- target exposure ~ 1 kg yr with CCD detectors
- **single electron resolution** to ionization signals
- 2-3 electron threshold (~eV)
- low background rate goal of ~**0.1 dru**
- scheduled for installation at the Laboratoire Souterrain de Modane (LSM) end of 2024

CCD module array

 $\frac{52 \text{ CCD modules}}{208 \text{ CCDs, total mass}} \sim 0.7 \text{ kg}$

DAMIC@SNOLAB

• 7 CCDs (6.0 g, 16 Mpix)

Operated @ 140 K.

PRD105(2022)062003

Total (bulk) background rate: ~10 (5) d.r.u.

Low pixel noise 1.6 e- with conventional readout.

Extremely low leakage current: 2 X 10⁻²² A cm⁻²

PRL123(2019)181802; PRL125(2020)241803;

PRL 130, 171003 (2023)

Ionization detectors - SENSEI

SENSEI@MINOS (230 m.w.e.)

- 5.5 Mpix of 15 μm
- 675 μm thick
- Active mass 2g
- 135 K
- 3000 dru

SENSEI@SNOLAB (6000 m.w.e.)

- 100 g
- Goal 5 dru
- 1st science run with 6 CCDs (~13 g),
- 2nd science run with 19 CCDs (~40 g)

Ionization detectors - OSCURA

Ionization detectors - CDEX

CDEX-10 @CJPL (China Jingping Underground Lab)

- 3 strings array, 3 PPC/each, ~10kg total;
- Direct immersion in LN₂; •
- 102.8 kg·day exposure, threshold =160 eVee;
- Bkg level: ~2 cpkkd@ 2-4 keV;

Cooling and shielding

CDEX-50 @ CJPL-II

- 10 strings array, 5 HPGe/each, ~50kg total
- BEGe + PPC LN2 •
- Bkg level: <0.01 cts/(keV·kg·day) @1 keV
- Energy threshold = 160 eV
- Exposure goal ~50 kg·year •
- WIMP SI sensitivity \rightarrow 10⁻⁴⁴ cm²

Many many others

DarkNESS: Dark matter Nanosatellite Equipped with Skipper Sensors

DMSQUARE: Daily Modulation experiment

CE vNS

- CONNIE (COherentNeutrino-Nucleus Interaction Experiment)@Angras dos Reis
- Atucha II Lima, Buenos Aires, Argentina

TES

MIGDAL effect

Through Migdal electron, DM detector can extend their sensitivity to lower WIMP masses if they can measure very low energy electrons ...but there is a big penalty rate, therefore Migdal is mostly exploited by large 1 Ton experiments

TESSERACT

- Large collection area without the drawback of the heat capacity of a large sensor
 - Signal is degraded by phonon collection efficiency factor (~20%)
- Readout of all targets identical except the substrate
- More DM science doesn't increase cost significantly!