The SNO+ Experiment

Nuno Barros, for the SNO+ collaboration

Rencontres de Physique de La Vallée d'Aoste March 5, 2024

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

The SNO+ Detector: media purification

- Material purification is a key aspect of SNO+ •
- Four purification plants installed underground • for water, scintillator and Te
- Can recirculate and repurify water and scintillator
- Extensive QA campaigns at each stage of ٠ theprocess:
 - before, during and after filling/loading

LS purification plant

TeA purification plant

The SNO+ Detector

- Extensive Physics Program covering all stages of the experiment:
 - Neutrinoless Double Beta Decay
 - Use ¹³⁰Te as isotope of choice
 - Primary goal of the experiment
 - Solar Neutrinos
 - Spanning across all three phases of the experiment
 - Different energy thresholds for each phase
 - Reactor Antineutrinos
 - Spanning across all three phases of the experiment
 - Analysis of flux, spectrum and oscillation parameters
 - Geo-neutrinos
 - Supernova neutrinos
 - Other physics
 - E.g. Nucleon decay, DSNB

$0\nu\beta\beta$ with SNO+

- Major advantages of 130Te
 - No need for enrichment
 - Long $2\nu\beta\beta$ half-life (7.9x10²⁰ years)
 - High Q-value at 2.527 MeV
- Major advantages of SNO+
 - 1. Large detector
 - Rejection of external backgrounds through fiducialization
 - 2. Loaded liquid scintillator
 - Fast timing allows rejection of coincidence backgrounds
 - High light yield for good resolution = target 460 PMT hits /MeV
 - Loading can be scaled
 - The phased loading approach
 - Constrain and validate the detector model
 - Target-out measurement before and during Te loading

SNO+ Water Phase 2018 2019 2021 2017 2020 2022 2023 Additional Cover gas Oct 2018 – June 2019 shielding to reduce Rn May – Dec 2017 (~185 gold physics days) ingresses in water (~115 gold physics days) Second SNO+ water phase First SNO+ water phase ~905 t H₂O **Major Outcomes** • Improved limits for invisible modes of nucleon decay Phys. Rev. D 99, 032008 (2019), Phys. Rev. D 105, 112012 (2022) Measurement of 8B solar neutrinos Phys. Rev. D 99, 012012 (2019) First measurement of reactor antineutrinos using pure water Phys.Rev.Lett 130, 091801 (2023)

- 0vββ Milestones
 - Optical calibration of the detector components (external water, acrylic, PMTs)
 - JINST 16 P10021 (2021)
 - Measurement of external backgrounds

SNO+ Water Phase Physics Results

- World's best limits on invisible modes of nucleon decay
- Solar neutrinos
 - detected via neutrino-electron elastic scattering
 - now with even lower backgrounds
- First observation of reactor events using pure water (undoped)
 - made possible by ~50% neutron detection efficiency (highest in a water Cherenkov detector)

Best limits are from SNO+

Decay Mode		ode	Partial Lifetime Limit	Existing Limits
	n		$9.0 imes10^{29}~{ m y}$	5.8×10^{29} y [5]
	р		$9.6 imes 10^{29} { m y}$	$3.6 \times 10^{29} \text{ y} [6]$
	pp		$1.1 \times 10^{29} { m y}$	4.7×10^{28} y [6]
	$\mathbf{n}\mathbf{p}$		$6.0 imes 10^{28}$ y	2.6×10^{28} y [6]
nn			1.5×10^{28} y	1.4×10^{30} y 5

Reactor Antineutrinos in SNO+ Water Phase

 $\bar{\nu}_e + p \rightarrow e^+ + n$

• Inverse Beta Decay (IBD)

- Coincidence event
 - Prompt positron kinetic energy (several MeV)
 - plus 1.022 MeV from annihilation γ 's
 - Delayed neutron capture 2.2 MeV γ

Nuno Barros, SNO+

$0\nu\beta\beta$ Milestone in Water: External Backgrounds

- Measure components that don't change with detector medium
- External background measurement during the water phase allows to use a directional cut
 - In energy: 3.0 < E < 5.0 MeV
 - In position: -5.0 < Z < 5.0 m
- Simple detector configuration

AV	$5.55 \text{ m} < R_{AV} < 5.7 \text{ m}$
	$U \cdot R_{AV} > 0.4$
External Water	6.3 m < R < 6.8 m
	$U \cdot R > 0.4$
PMT	$1.6 < R^3 < 2.0$
	$U \cdot R < -0.8$
Internal Water	$R_{AV} < 4.7 \mathrm{m}$
	Nuno Barros, SNO+

Background	Rate (Fraction of Nominal)
AV+Ropes	$0.21 \pm 0.009^{+0.64}_{-0.21}$
External Water	$0.44 \pm 0.003^{+0.32}_{-0.27}$
PMT	$1.48 \pm 0.002^{+1.65}_{-0.60}$
	9

$0\nu\beta\beta$ Milestone: Scintillator Backgrounds

Solar directionality in scintillator

Solar neutrino direction reconstructed **event-by-event** in 0.6 g/L PPO scintillator!

- Directional Cherenkov light separated from isotropic scintillation light using timing information
- First demonstration in a high light-yield, large-scale detector

13

Antineutrinos in SNO+

On-going antineutrino analysis in scintillator

- (α, n) reactions are main background
- Major source of α ^{210}Po factor ~3 smaller from partial fill to 2.2 g/L full fill phase
- Classifier developed in-house helps separate ${}^{13}C(\alpha, n)$ reactions from anti-neutrinos
- Expect sensitivity to Δm_{21}^2 and geo-neutrino measurement

Target-Out Measurement

Preparation for the double-beta decay phase: background and target-out measurement

- Prepare/test analysis and techniques using real data
- Determine the count rate in the ROI in the absence of Te

- In partial-fill:
 - Expected 8 events in ROI
 - Observed 2
- In full-fill:
 - Analysis still in progress

Preparing for Te-loading : Upcoming Milestones

2022

2023

2021

• Major milestones:

2018

2017

• July 2023 : BisMSB added to the scintillator

2019

• Spring 2024 : test batch (~200 kg) of the TeA purification plant

2020

- First full-scale test of the SNO+ Te purification and loading systems
- Samples will be collected for off-site ICP-MS analysis of U/Th
- During 2024: Start adding TeLS components
- From 2025: Start counting with Te

SNO+ Prospects: Signal / background

- Events in the Region Of Interest + Fiducial Volume
 - 9.47 events/yr (at nominal backgrounds)

SNO+ Prospects: Background Mitigation Strategies

• Fiducialization to minimize the leak in ROI

Nuno BMonitoring the contribution from the scintillator when adding Te

SNO+ Prospects: Sensitivity Projections

- Expected sensitivity of 2x10²⁶ years
 - After 3 years
 - With 0.5% natTe loading
- Planned future higher loadings
 - Potential to cover the whole inverted ordering band
 - R&D shows good optical properties and longterm stability

Summary

- SNO+ has successfully completed its scintillator loading and is taking data with 2.2 g/L PPO as of April 2022
 - On-going addition of bisMSB in preparation for Te phase
- Much work has happened in preparation for the $0\nu\beta\beta$ searches:
 - Constant monitoring of the scintillator
 - Initial measurements show radioactive backgrounds below the targeted values
- Many exciting physics analyses on-going with scintillator data!

