Measuring Oscillations with a Million Atmospheric Neutrinos

Based on: C. Argüelles, et al., PRX 13 (2023) S.Giner Olavarrieta, et al., arXiv: 2402.13308 K.J.Kelly, et al., PRL 123 (2019) 8

ToeCube Neutrino Observatory

Ivan Martínez Soler

LA THUILE 2024 - Les Rencontres de Physique de la Vallée d'Aoste.

Atmospheric neutrinos

Atmospheric neutrinos are created in the collision of cosmic rays with the atmospheric nuclei

Ivan Martinez-Soler (IPPP) ²

Neutrinos have mass!

Ivan Martinez-Soler (IPPP)

There are experimental **evidence** showing that neutrinos are massive particles

Takaaki Kajita (Super-kamiokande) Neutrino 98

In the **SM**, neutrinos are **massless particles**

3*ν* **mixing**

In the **3ν scenario**, neutrino evolution is described by six parameters

$$
i\frac{d\nu}{dE} = \frac{1}{2E} \left(U^{\dagger} \text{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U \right) \nu \qquad \nu_{\alpha} = \sum_{\alpha} \nu_{\alpha} \frac{d\nu}{dE}
$$

Ivan Martinez-Soler (IPPP)

 $=$ $\sum U_{\alpha i}$ V_i 0.25 0.3 0.35 0.4 $\sin^2 \theta_{12}$ 0.2 5 10 15 χ^2 6.5 7 7.5 8 8.5 $\Delta \textsf{m}^2_{21}$ [10 $^{\text{-5}}$ eV $^{\text{-2}}$] 0.4 0.45 0.5 0.55 0.6 $\sin^2 \theta_{23}$ Ω 5 10 15 χ^2 -2.6 -2.5 -2.4 $\Delta \mathsf{m}_{32}^2$ [10 $^{-3}$ eV 2] $\Delta \mathsf{m}_3^2$ 0.022 0.024 0.026 $\sin^2 \theta_{13}$ 0.018 0.02 5 10 15 χ^2 0 90 180 270 360 δ_{CP} NO, IO (w/o SK-atm) = NO, IO (w/o SK-atm)
:== NO, IO (with SK-atm) NuFIT 5.1 (2021) IO I I I I I NO 4 Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09 (2020) 178

Present sensitivity to the 3v scenario reaches ~3% for most of the parameters.

3*ν* **mixing**

Ivan Martinez-Soler (IPPP)

The less constrained parameters are:

This analysis aims to investigate the insight that atmospheric neutrinos can provide on those uncertainties

Sub-GeV

For E < 1GeV, atmospheric neutrino oscillations are **dominated by** Δm_{21}^2 .

$$
\rightarrow \nu_e) \neq P(\nu_e \rightarrow \nu_\mu)
$$

Ivan Martinez-Soler (IPPP)

 $sin(\Delta_{32})$

$$
P_{CP} = -8J_{CP}^{max} \sin(\delta_{cp}) \sin(\Delta_{21}) \sin(\Delta_{31})s
$$

For $\delta_{cp} \neq 0$, the CPT conservation implies $P(\nu_{\mu}$

The **CP-violation** term is **enhanced** due to the solar oscillation.

I. Martinez-Soler, H. Minakata, PTEP (2019) 7, 073B07

Sub-GeV

Several experiments have measured the neutrino flux at different energy scales. The sub-GeV component has been

measured by SK

Super-Kamiokande (SK)

- 22.5 kton water Cherenkov
- Small sample at multi-GeV due to the volume
- The event sample is divided in FC, PC and Up-*μ*

- We have developed a simulation of **SK** considering **all the phases**
- We also included **HK**

Ivan Martinez-Soler (IPPP)

Multi-GeV

- The matter effect enhances the oscillation of neutrinos (antineutrinos) for NO (IO)
- The enhancement of the effective θ_{13} . MSW resonance.

At the GeV scale, there is resonant flavor conversion. Neutrinos are sensitive to the **mass ordering**:

In the multi-GeV region, neutrino evolution is dominated by Δm^2_{31} and $\sin^2\theta_{23}$

$$
E_r \simeq 5.3 \text{GeV} \left(\frac{\Delta m_{31}^2}{2.5 \times 10^{-3} \text{eV}^2} \right) \left(\frac{\cos 2\theta}{0.95} \right) \left(\frac{\rho}{6 \text{g/cc}} \right)
$$

Multi-GeV

The **neutrino telescopes** measure the high-energy part of the atmospheric neutrino flux

- ~ 1 km³ ice Cherenkov
- The upgrade will add seven additional strings lowering the energy threshold to ~1GeV

We developed an MC for ORCA based on energy and Zenit reconstruction provided by the collaboration

Systematic uncertainties

The uncertainties on the atmospheric neutrino **flux** and the **cross-section** are common to all detectors.

Flux systematics

We account for the uncertainties over the normalization, energy dependence, up/ down, ν_e/ν_{μ} , $\overline{\nu}/\nu_{\mu}$

Cross-section systematics

ν/*ν* Different types of interactions affect the atmospheric neutrino interaction due to the large energy range covered

Combined analysis: mass ordering

-
- We expect to reach 6*σ* by the end of the decade.

-
-

Combined analysis: *δcp*

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

-like with no neutron tagged

Ivan Martinez-Soler (IPPP)

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

Systematic impact

A **detailed analysis** of all the systematics is performed. The uncertainties related to the **flux** have a larger impact on δ_{CP}

Boosting the Sentivity with Inelasticity

The **mass ordering** and the **CP-phase** predict a **different oscillations** between **neutrinos** and **antineutrinos**.

- ν_{μ} CC interaction the energy is devided between tracks and cascades.
- Neutrinos and antineutrinos divide their energy differently between the leptonic and the hadronic part differently

$$
y = \frac{E^{casc}}{E_{\nu}}
$$

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

See also: Ribordy and Smirnov, Phys.Rev.D, 87, 113007 (2013)

Boosting the Sentivity with Inelasticity

The reconstructed inelasticity is based on the reconstructed energies of the track and the cascade.

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

Reconstructed inelasticity

$$
y_r = \frac{E_r^{casc}}{E_r^{casc} + E_r^{track}}
$$

• The **inelasticity** allows for a **50% increase** in sensitivity to the **mass ordering**, reaching 8.4σ in 5 years.

• In the case of δ_{CP} , the sensitivity increases by 15%

Boosting the Sentivity with Inelasticity

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

Ivan Martinez-Soler (IPPP) 17

LArTPCs:

- Excellent capabilities to **identify charged particles**.
- Precise measurement of the **energy and the direction** of lowenergy charged particles

Future Experiments: DUNE

visible protons and pions in the final state (CC − NpMπ).

KJ.Kelly, P.A.N.Machado, IMS, S.J.Parke Y.F.Perez-Gonzalez, Phys.Rev.Lett 123 (2019) 8

Future Experiments: DUNE

Ivan Martinez-Soler (IPPP) and the contract of the contract

 δ_{cp} induces a large deviation in the number of expected events for DUNE

 $N_e - CC - 1p0\pi$

KJ.Kelly, P.A.N.Machado, I. Martinez-Soler, S.J.P Y.F.Perez-Gonzalez, Phys.Rev.Lett 123 (2019) 8

Conclusions

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

- The 3ν mixing scenario explains with good accuracy most of the data measured in reactors, accelerators, solar, and atmospheric neutrinos
- In the near future, atmospheric neutrinos can provide valuable information about the less constraints parameters:
	- The ordering can be resolved to ∼ 6*σ*
	- The wrong θ_{23} octant can be excluded at 3σ
	- Part of the parameter space of the CP phase can be explored at 3*σ*
- In the future, new detectors like DUNE can improve the precision over the CP phase

Thanks!

The **SK+IC-upgrade+ORCA** will have better sensitivity than **LBL** and **reactor** experiments.

2.7

- $\sin^2 \theta_{13} = 0.022$ (fixed)
- Profiled over *δcp*

 $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} 2.5$
 $\sum_{n=1}^{\infty} 2.4$

2.3

Combined analysis: θ_{23} and Δm^2_{31}

Ivan Martinez-Soler (IPPP) ²²

Combined analysis: *δcp*

The sensitivity to the CP phase depends on the true value

A large fraction of δ_{CP} can be excluded at 99% CL for any value of δ_{CP} using only atmospheric neutrinos

Ivan Martinez-Soler (IPPP)

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, arXiv:2211.02666

Flux uncertainties

The uncertainties on the atmospheric neutrino flux reduce the sensitivity to the mixing parameters.

$$
\Phi_{\alpha}(E, \cos \zeta) = f_{\alpha}(E, \cos \zeta) \Phi_0 \left(\frac{E}{E_0}\right)^{\delta} \eta(\cos \zeta)
$$

 $(S(\zeta))$

δ

These systematics are common to both experiments

Ivan Martinez-Soler (IPPP)

K. Abe et al. (Super-Kamiokande), Phys.Rev.D97 (2018) 7, 072001

Cross-section uncertainties

K. Abe et al. (Super-Kamiokande), Phys.Rev.D97 (2018) 7, 072001

Different types of interactions affect the atmospheric neutrino interaction due to the large energy range covered by the flux

These systematics are common to both experiments

²⁷ **Ivan Martinez-Soler (IPPP)**

Booting the Sentivity with Inelasticity

To test the results, we explored different uncertainties in the inelasticity

There is a large uncertainty in the inelasticity when most of the energy goes to the cascade.

²⁸ **Ivan Martinez-Soler (IPPP)**

Future Experiments: DUNE

Future Experiments: DUNE

