Measuring Oscillations with a Million Atmospheric Neutrinos

KM3NeT-ORCA Mediterraneari

Ivan Martínez Soler

LA THUILE 2024 - Les Rencontres de Physique de la Vallée d'Aoste. Based on: C. Argüelles, et al., PRX 13 (2023) S.Giner Olavarrieta, et al., arXiv: 2402.13308 K.J.Kelly, et al., PRL 123 (2019) 8

Antarctica

Atmospheric neutrinos

Atmospheric neutrinos are created in the collision of cosmic rays with the atmospheric nuclei

Neutrinos have mass!

In the **SM**, neutrinos are **massless particles**

There are experimental evidence showing that neutrinos are massive particles

Ivan Martinez-Soler (IPPP)

Takaaki Kajita (Super-kamiokande) Neutrino 98

3ν mixing

In the **3v scenario**, neutrino evolution is described by six parameters

$$i\frac{d\nu}{dE} = \frac{1}{2E} \left(U^{\dagger} \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U \right) \nu \qquad \nu_{\alpha} = \sum_{\alpha} \frac{1}{2E} \left(U^{\dagger} \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U \right) \nu$$

Present sensitivity to the 3ν scenario reaches ~3% for most of the parameters.

NO, IO (w/o SK-atm) == NO, IO (with SK-atm) 15 10 $\Delta \chi^2$ 0.3 7.5 0.2 0.25 0.35 0.4 6.5 7 $\sin^2 \theta_{12}$ $\Delta m_{21}^2 [10^{-5} \text{ eV}^2]$ $\sum U_{\alpha i} \nu_i$ 10 10 $\Delta\chi^2$ 5 0 0.65 -2.6 -2.5 -2.4 0.4 0.45 0.5 0.55 0.6 $\sin^2 \theta_{23}$ Δm_{32}^2 [10⁻³ eV²] Δm_{31}^2 15 10 $\Delta\chi^2$ 5 Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP 09 (2020) 178 0.018 0.02 0.022 0.024 0.026 180 90 $\mathbf{0}$ $\sin^2 \theta_{13}$ δ_{CP}

3ν mixing

The less constrained parameters are:

This analysis aims to investigate the insight that atmospheric neutrinos can provide on those uncertainties

Sub-GeV

For E < 1GeV, atmospheric neutrino oscillations are dominated by Δm_{21}^2 .

The **CP-violation** term is **enhanced** due to the solar oscillation.

$$P_{CP} = -8J_{CP}^{max}\sin(\delta_{cp})\sin(\Delta_{21})\sin(\Delta_{31})s$$

 $P(\nu_{\mu})$ For $\delta_{cp} \neq 0$, the CPT conservation implies

I. Martinez-Soler, H. Minakata, PTEP (2019) 7, 073B07

Ivan Martinez-Soler (IPPP)

 $sin(\Delta_{32})$

$$\rightarrow \nu_e) \neq P(\nu_e \rightarrow \nu_\mu)$$

Sub-GeV

measured by SK

Super-Kamiokande (SK)

- 22.5 kton water Cherenkov
- Small sample at multi-GeV due to the volume
- The event sample is divided in FC, PC and Up- μ

- We have developed a simulation of **SK** considering all the phases
- We also included **HK**

Several experiments have measured the neutrino flux at different energy scales. The sub-GeV component has been

Multi-GeV

In the multi-GeV region, neutrino evolution is dominated by Δm^2_{31} and $\sin^2\theta_{23}$

At the GeV scale, there is resonant flavor conversion. Neutrinos are sensitive to the mass ordering:

- The matter effect enhances the oscillation of neutrinos (antineutrinos) for NO (IO)
- The enhancement of the effective θ_{13} . MSW resonance.

$$E_r \simeq 5.3 \text{GeV}\left(\frac{\Delta m_{31}^2}{2.5 \times 10^{-3} \text{eV}^2}\right) \left(\frac{\cos 2\theta}{0.95}\right) \left(\frac{\rho}{6 \text{g/cc}}\right)$$

Multi-GeV

The neutrino telescopes measure the high-energy part of the atmospheric neutrino flux

IceCube

- $\sim 1 \text{km}^3$ ice Cherenkov
- The upgrade will add seven additional strings lowering the energy threshold to ~1GeV

We developed an MC for ORCA based on energy and Zenit reconstruction provided by the collaboration

Systematic uncertainties

Flux systematics

We account for the uncertainties over the normalization, energy dependence, up/ down, ν_e/ν_μ , $\overline{\nu}/\nu$

The uncertainties on the atmospheric neutrino **flux** and the **cross-section** are common to all detectors.

Cross-section systematics

Different types of interactions affect the atmospheric neutrino interaction due to the large energy range covered

Systematic	Uncer./Prior	
CCQE	10%	
CCQE $\nu/\overline{\nu}$	10%	
CCQE e/µ	10%	
CC1 <i>π</i>	10%	
CC1 $\pi \pi^0 / \pi^{\pm}$	40%	
CC1 $\pi \nu_e / \overline{\nu_e}$	10%	
CC1 $\pi \nu_{\mu}/\overline{\nu_{\mu}}$	10%	
Coh. <i>π</i>	100%	
Axial Mass	10%	
NC hadron	5%	
NC over CC	10%	
$ u_{ au}$	25%	
Neutron prod.	15%	
DIS	10%	

and M. Jin, PRX 13 (2023) 4, 041055

Combined analysis: mass ordering

- We expect to reach 6σ by the end of the decade.

Combined analysis: δ_{cp}

-like with no neutron tagged

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

Systematic impact

A detailed analysis of all the systematics is performed. The uncertainties related to the flux have a larger impact on δ_{CP}

Ivan Martinez-Soler (IPPP)

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

Boosting the Sentivity with Inelasticity

The mass ordering and the CP-phase predict a different oscillations between neutrinos and antineutrinos.

- ν_{μ} CC interaction the energy is devided between tracks and cascades.
- Neutrinos and antineutrinos divide their energy differently between the leptonic and the hadronic part differently

$$y = \frac{E^{casc}}{E_{\nu}}$$

ks and ty $\begin{bmatrix} 2 \\ 1 \\ 2 \\ 0.0 \end{bmatrix} \begin{bmatrix} 0 \\ 0.1 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0 \\ 0.4 \end{bmatrix} \begin{bmatrix} 0 \\ 0.6 \end{bmatrix} \begin{bmatrix} 0 \\ 0.8 \end{bmatrix} \begin{bmatrix} 0$

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

See also: Ribordy and Smirnov, Phys.Rev.D, 87, 113007 (2013)

Boosting the Sentivity with Inelasticity

The reconstructed inelasticity is based on the reconstructed energies of the track and the cascade.

$$y_r = \frac{E_r^{casc}}{E_r^{casc} + E_r^{track}}$$

Reconstructed inelasticity

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

Boosting the Sentivity with Inelasticity

S.Giner Olavarrieta, M. Jin, C. Argüelles, P. Fernández, IMS, arXiv: 2402.13308

Ivan Martinez-Soler (IPPP)

The **inelasticity** allows for a **50% increase** in sensitivity to the mass ordering, reaching 8.4σ in 5 years.

• In the case of δ_{CP} , the sensitivity increases by 15%

Future Experiments: DUNE

LArTPCs:

- Excellent capabilities to identify charged particles.
- Precise measurement of the energy and the direction of lowenergy charged particles

We consider events topologies based on the number of visible protons and pions in the final state (CC – NpM π).

Np	Events/400 kton year	
СС-0р0п	~7000	
СС-1р0п	~12000	
СС-2р0п	~500	
CC-0p1π	~200	

KJ.Kelly, P.A.N.Machado, IMS, S.J.Parke Y.F.Perez-Gonzalez, Phys.Rev.Lett 123 (2019) 8

Future Experiments: DUNE

 δ_{cp} induces a large deviation in the number of expected events for DUNE

 $N_e - CC - 1p0\pi$

 $\cos \theta_z$

Ivan Martinez-Soler (IPPP)

KJ.Kelly, P.A.N.Machado, I. Martinez-Soler, S.J.P Y.F.Perez-Gonzalez, Phys.Rev.Lett 123 (2019) 8

Conclusions

- The 3ν mixing scenario explains with good accuracy most of the data measured in reactors, accelerators, solar, and atmospheric neutrinos
- In the near future, atmospheric neutrinos can provide valuable information about the less constraints parameters:
 - The ordering can be resolved to $\sim 6\sigma$
 - The wrong θ_{23} octant can be excluded at 3σ
 - Part of the parameter space of the CP phase can be explored at 3σ
- In the future, new detectors like DUNE can improve the precision over the CP phase

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, PRX 13 (2023) 4, 041055

Thanks!

The SK+IC-upgrade+ORCA will have better sensitivity than LBL and reactor experiments.

2.7

- $\sin^2 \theta_{13} = 0.022$ (fixed)
- Profiled over δ_{cp}

 $\sum_{n=2}^{2} (2.6^{-3})^{2} (eV)^{2}$

2.3

Combined analysis: θ_{23} and Δm_{31}^2

Combined analysis: δ_{cp}

The sensitivity to the CP phase depends on the true value

A large fraction of $\delta_{CP}\,$ can be excluded at 99% CL for any value of $\delta_{CP}\,$ using only atmospheric neutrinos

C.A. Argüelles, P. Fernandez, I. Martinez-Soler and M. Jin, arXiv:2211.02666

Flux uncertainties

The uncertainties on the atmospheric neutrino flux reduce the sensitivity to the mixing parameters.

$$\Phi_{\alpha}(E, \cos \zeta) = f_{\alpha}(E, \cos \zeta) \Phi_0 \left(\frac{E}{E_0}\right)^{\delta} \eta(\cos \zeta)$$

 $(s \zeta)$

These systematics are common to both experiments

Systematic	Uncert./Pric	
$\Phi_0(E < 1 \text{ GeV})$	25%	
$\Phi_0(E > 1 \text{ GeV})$	15%	
$ u_e/ u_\mu$	2%	
$\overline{ u}/ u$	2%	
δ	20%	
$C_{u,d}$	2%	

K. Abe et al. (Super-Kamiokande), Phys.Rev.D97 (2018) 7, 072001

Cross-section uncertainties

Different types of interactions affect the atmospheric neutrino interaction due to the large energy range covered by the flux

These systematics are common to both experiments

Systematic	Uncer./Pric
CCQE	10%
CCQE $\nu/\overline{\nu}$	10%
CCQE e/µ	10%
CC1 π	10%
CC1 π π^0/π^\pm	40%
CC1 $\pi \nu_e / \overline{\nu_e}$	10%
CC1 $\pi \ u_{\mu}/\overline{ u_{\mu}}$	10%
Coh. π	100%
Axial Mass	10%
NC hadron prod.	5%
NC over CC	10%
$ u_{ au}$	25%
Neutron prod. (SK)	15%
DIS	10%

¹⁰² ⁽¹⁰² ^{(102) ⁽¹⁰² ⁽¹⁰² ^{(102) ⁽¹}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

or		

Booting the Sentivity with Inelasticity

To test the results, we explored different uncertainties in the inelasticity

There is a large uncertainty in the inelasticity when most of the energy goes to the cascade.

Future Experiments: DUNE

Future Experiments: DUNE

