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Galaxies far, far away…
Exploring the Universe with Weak 

Gravitational Lensing and Galaxy Clustering



Photometric (imaging) surveys
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Dark Energy Survey
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Geometry and Growth
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FIG. 1.ÈProjected mass distribution at z \ 0 in slices through four CDM N-body simulations. The length of each slice is 239.5 h~1 Mpc, and the
thickness is 1/10 of this. To plot these slices, the mass distribution was Ðrst smoothed adaptively onto a Ðne grid using a variable kernel technique similar to
that used to estimate gas densities in smoothed particle hydrodynamics. At z \ 0, the general appearance of all the models is similar because, by construction,
the phases of the initial Ñuctuations are the same. On larger scales, the higher Ñuctuation amplitude in the "CDM and OCDM models is manifest in sharper
Ðlaments and larger voids compared to the SCDM and qCDM models. The two ) \ 1 models look very similar as do the two models, but, because)0 \ 0.3
of their higher normalization, the latter show more structure.

JENKINS et al. (see 499, 25)
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Concordance Cosmology?

Park & Rozo 2019
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FIG. 3. Low-z, Planck, and R19 constraints in the e2–h (�8⌦
0.71
m –h) parameter subspace. We emphasize that the parameter

combination �8⌦
0.71
m is very nearly prior independent in the Low-z data set, and is associated with the lensing strength of the

low redshift Universe. The Hubble parameter constraint from the Low-z data set is driven by the same early Universe physics
that lead to the Planck counterpart, but constitutes a fully independent calibration of the sound horizon scale. The excellent
agreement between Planck and Low-z on the Hubble parameter paints a consistent picture of the sound horizon, and suggests
that reconciling these values with R19 will require modification to early Universe physics. In contrast, the e2 tension between
Planck and Low-z data sets reflect a di↵erence between the lensing strength predicted from Planck based on the early Universe
and the low redshift measurements. Reconciling these two results will therefore require altering late-time Universe physics,
likely those associated with the current accelerated phase of expansion. Put together, the results shown here point towards two
very distinct failures of the standard flat ⇤CDM paradigm.

and R19 data sets. We recover a 4.0� tension between
Planck and R19, and a 3.7� tension between the Low-z
and R19 data sets.

V. DISCUSSION

Figure 3 summarizes the di↵erent tensions identified in
our analysis. The figure shows the posterior distribution
from each of the three data sets considered here in the
e2–h (�8⌦0.71

m –h) plane. We do not showcase the first
eigenvector e1 (⌦bh

2.55) because the Low-z and Planck
results are in good agreement along this direction.
Along the h direction, both Planck and Low-z are in

tension with R19. These two measurements share a com-
mon theoretical model for the sound horizon scale rs, but
are otherwise fully independent. That is, the Low-z mea-
surement constitutes a new, completely independent cal-
ibration of the sound horizon scale. The excellent agree-
ment between the Planck and Low-z measurements of h
suggests that the evolution of the angular diameter dis-
tance in the flat ⇤CDM model is correct, though a con-
spiracy of cancelling errors at two epochs is still a possi-
bility. In absence of such a conspiracy, reconciling these
two experiments with R19 will require a modification of
the early Universe physics capable of impacting the sound
horizon scale. Recently, Aylor et al. [20] reached a similar
conclusions from an in-depth analysis of the acoustic fea-
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Outline
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• Cosmology with galaxy surveys: combining 
weak lensing and galaxy clustering 

• Dark Energy Survey (DES, Year 3) and joint 
analysis with the Kilo Degree Survey (KiDS) 

• Modeling galaxy observables 
• The future of galaxy surveys



Lensing and large-scale structureMaps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Fig: ESA
12 C. Chang et al.

�E; 0.2 < z < 1.3

Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)

lensing shear/convergencegalaxy density

(Weak) Gravitational Lensing 

Dark Energy Survey

DES Year 1: Elvin-Poole+ 2018; Chang+ 2018 6



Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-
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FIG. 3. The cosmic shear correlation functions ⇠+ (top panel) and ⇠� (bottom panel) in DES Y1 in four source redshift bins, including cross
correlations, measured from the METACALIBRATION shear pipeline (see [92] for the corresponding plot with IM3SHAPE); pairs of numbers in
the upper left of each panel indicate the redshift bins. The solid lines show predictions from our best-fit ⇤CDM model from the analysis of all
three two-point functions, and the shaded areas display the angular scales that are not used in our cosmological analysis (see §IV).
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FIG. 2. Top panels: scaled angular correlation function, ✓w(✓), of redMaGiC galaxies in the five redshift bins in the top panel of Figure 1, from
lowest (left) to highest redshift (right) [94]. The solid lines are predictions from the ⇤CDM model that provides the best fit to the combined
three two-point functions presented in this paper. Bottom panels: scaled galaxy–galaxy lensing signal, ✓�t (galaxy-shear correlation), measured
in DES Y1 in four source redshift bins induced by lens galaxies in five redMaGiC bins [93]. Columns represent different lens redshift bins
while rows represent different source redshift bins, so e.g., bin labeled 12 is the signal from the galaxies in the second source bin lensed by
those in the first lens bin. The solid curves are again our best-fit ⇤CDM prediction. In all panels, shaded areas display the angular scales that
have been excluded from our cosmological analysis (see §IV).

9

10
1

10
2

0.0

1.0

2.0

14

FIG. 2. Top panels: scaled angular correlation function, ✓w(✓), of redMaGiC galaxies in the five redshift bins in the top panel of Figure 1, from
lowest (left) to highest redshift (right) [94]. The solid lines are predictions from the ⇤CDM model that provides the best fit to the combined
three two-point functions presented in this paper. Bottom panels: scaled galaxy–galaxy lensing signal, ✓�t (galaxy-shear correlation), measured
in DES Y1 in four source redshift bins induced by lens galaxies in five redMaGiC bins [93]. Columns represent different lens redshift bins
while rows represent different source redshift bins, so e.g., bin labeled 12 is the signal from the galaxies in the second source bin lensed by
those in the first lens bin. The solid curves are again our best-fit ⇤CDM prediction. In all panels, shaded areas display the angular scales that
have been excluded from our cosmological analysis (see §IV).
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Dark Energy Survey
• DECam (520 Mpix) on 4m Blanco 

Telescope, Cerro Tololo, Chile 

• 1/8 of sky (5000 deg2) 

• 6 year mission, 525 nights, 
completed Jan 2019. Y3 is full 
area. Y6 analysis in progress 

• grizY filters (photometric redshifts) 

• ~300 million galaxies (0 < z < 2) 
Y3: 100 million with WL shapes 
Y6: deeper and has a second 
shear measurement method
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DES Y3 correlation functions 
DES Collaboration Key Paper 2022 (arXiv:2105.13549)

8

10�4

10�3

10�2

10�1

w

1,1

101 102

� (arcmin)

0

�
w

/�
w

2,2

101 102

� (arcmin)

3,3

101 102

� (arcmin)

4,4

101 102

� (arcmin)

5,5

101 102

� (arcmin)

6,6

101 102

� (arcmin)

FIG. 2. The measured w(✓) correlation functions for each tomographic bin i of the MagLim lens galaxies (indicated by the i, i label in each
panel). The best-fit ⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the solid line in the top part of each panel, while the bottom
part of each panel shows the fractional difference between the measurements and the model prediction, (wobs. � wth.)/�w (with y-axis range
±5�). In both the top and bottom part of each panel, 1� error bars are shown. Small angular scales where the linear galaxy bias assumption
breaks down are not used in the cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.

FIG. 3. The measured �t(✓) correlation functions for each tomographic bin combination using the MagLim sample. In each panel, the label
i, j refers to MagLim lens tomographic bin i and the source bin j The best-fit ⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the
solid line in the top part of each panel, with dotted curves indicating a negative model fit. The bottom part of each panel shows the fractional
difference between the measurements and the model prediction, (�obs.

t � � th.
t )/��t

(with y-axis range ±5�). In both the top and bottom part
of each panel, 1� error bars are included. Small angular scales where the linear galaxy bias assumption breaks down are not used in the
cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.
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FIG. 5. The measured ⇠±(✓) correlation functions for each tomographic bin combination, with labels as described in Fig. 3. The best-fit
⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the solid line in the top part of each panel, while the bottom part of each panel
shows the fractional difference between the measurements and the model prediction, (⇠obs.

± � ⇠th.
± )/�⇠± (with y-axis range ±5�). In both

the top and bottom part of each panel, 1� error bars are included. The shaded regions (both light and dark) indicate scales not used in the
fiducial analysis, primarily due to uncertainties in the impact of baryonic effects. The lighter shaded regions indicate scales that are used in an
⇤CDM-optimized analysis, which meets our criterion for scale cuts described in Sec. IV in ⇤CDM only.

criterion for limiting the contribution of any systematic error
to bias in the cosmological parameters. The threshold for this
criterion is intended to limit the expected total bias in the 2D
marginalized ⌦m–S8 plane from several independent poten-
tial sources of model bias to be contained within the 68% C.L.
region [129] (< 0.3� for any single contribution). The differ-
ence between the mean and best-fit values can give an indi-
cation of the magnitude of projection or non-Gaussian effects
in the marginalized parameter posteriors. The estimated im-
pact of projection or volume effects in the DES Year 3 3⇥2pt
posteriors are tested and summarized in Ref. [129]. We also
provide a 2D figure of merit (FoM) defined for two parame-
ters as FoMp1,p2 = (det Cov(p1, p2))

�1/2 [167, 168]. The
FoM is proportional to the inverse area of the confidence re-
gion in the space of the two parameters, and can be considered
a summary statistic that enables a straightforward comparison
of constraining power of experiments or analysis scenarios.

The analysis was designed and validated without access to
the true cosmological results to protect against confirmation or
observer bias. This process is described in detail in App. D.

A. Model

We model the observed projected (lens) galaxy density con-
trast �

i

obs(n̂) as a combination of projected galaxy density
contrast and modulation by magnification, �µ,

�
i

obs(n̂) = �
i

g(n̂) + �
i

µ
(n̂) (6)

for position vector n̂, where i and j represent the redshift bin.
The observed shear signal � is modeled as the sum of gravita-
tional shear, �G, and intrinsic alignments, ✏I,

�
j

↵
(n̂) = �

j

G,↵
(n̂) + ✏

j

I,↵(n̂) , (7)

with ↵ the shear components. While B-modes produced by
higher-order weak lensing effects are negligible for our analy-
sis, it is important to account for B-modes generated by intrin-
sic alignments in the computation of cosmic shear two-point
correlation functions. In Fourier space, this decomposition
can be written as

�
j

E(`) = 
j
(`) + ✏

j

I,E(`) , �
j

B(`) = ✏
j

I,B(`) , (8)
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Y3 results: Consistency (?) with 
Planck (in !CDM)

=ǙͮܝܹͭǬܹ,ƽƴƺܝܹƽǓܹӜ��B

sƧܹǳƧǬǳܹǳƺƧܹǩǙƜǶǬǳǓƧǬǬܹǙƳܹӜ��BܹƜʹܹƝǙǒǦƎǩƽǓƴܹ
ǒƧƎǬǶǩƧǒƧǓǳǬܹǙƳܹǳƺƧܹƝǍǶǬǳƧǩƽǓƴܹƎǒǦǍƽǳǶƣƧܹƎǳܹ
ǍǙͮܝǩƧƣǬƺƽƳǳܹǳǙܹǳƺƧܹǦǩƧƣƽƝǳƽǙǓܹƳǩǙǒܹǳƺƧܹƝǙǬǒƽƝܹ
ǒƽƝǩǙͮƎͭƧܹƜƎƝǋƴǩǙǶǓƣܹܐ�B�ܑܹƎǳܹƺƽƴƺܝǩƧƣǬƺƽƳǳ۬

sƧܹΟǓƣܹǓǙܹǬƽƴǓƽΟƝƎǓǳܹƧͭƽƣƧǓƝƧܹǙƳܹƽǓƝǙǓǬƽǬǳƧǓƝʹܹ
ƜƧǳͮƧƧǓܹ��[ܹyـܹـǕؿǦǳܹƎǓƣܹUǉƊǏƙǇܹ�B�ܹƎǳܹ
۬مف۬ؽܝـؾ۬ؽݯᶥܹǙǩܹǦق۬ؾܝل۬ؽ

كك

�ܐ
ǍǶ
ǬǳƧ
ǩƽǓ
ƴܹƎ
ǒ
ǦǍ
ƽǳǶ
ƣƧ
ܑ

�ƧǓǬƽǳʹܹǙƳܹǒƎǳǳƧǩܑܐ

/ǓǳƧǩǓƎǍܹƝǙǓǬƽǬǳƧǓƝʹ

bͮǙܹƝǙǩǩƧǍƎǳƧƣܹƝǙǬǒǙǍǙƴƽƝƎǍܹǦǩǙƜƧǬۤ

۬ؾ �ǙǬǒƽƝܹǬƺƧƎǩܹܐƜǍǶƧܑ
۬ؿ %ƎǍƎͳʹܹƝǍǶǬǳƧǩƽǓƴܹƎǓƣܹǳƎǓƴƧǓǳƽƎǍܹ

ǬƺƧƎǩܹܐǙǩƎǓƴƧܑ

sƧܹΟǓƣܹƝǙǓǬƽǬǳƧǓƝʹܹƜƧǳͮƧƧǓܹǳƺƧǒ۬

�ǙǬǒƽƝܹǬƺƧƎǩܹǒǙǬǳܹǬƧǓǬƽǳƽͭƧܹǳǙܹƝǍǶǬǳƧǩƽǓƴܹ
ƎǒǦǍƽǳǶƣƧ۬

%ƎǍƎͳʹܹƝǍǶǬǳƧǩƽǓƴܹƎǓƣܹǳƎǓƴƧǓǳƽƎǍܹǬƺƧƎǩܹǒǙǩƧܹ
ǬƧǓǬƽǳƽͭƧܹǳǙܹǳǙǳƎǍܹǒƎǳǳƧǩܹƣƧǓǬƽǳʹ۬

ؾك
�ƧǓǬƽǳʹܹǙƳܹǒƎǳǳƧǩܑܐ

�ܐ
ǍǶ
ǬǳƧ
ǩƽǓ
ƴܹƎ
ǒ
ǦǍ
ƽǳǶ
ƣƧ
ܑ

1.5" parameter tension vs. 2.2" in Y1
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Y3 results: Hubble tension 
~4" tension with SH0ES

26

FIG. 18. A comparison of weak lensing constraints on the ⇤CDM
model. Weak lensing of the CMB is shown in green, weak lensing
of galaxies in DES is shown in blue, and the combined DES 3⇥2pt
data is shown in black.

FIG. 19. The DES ⇤CDM-optimized 3⇥2pt and cosmic shear, HSC
and KiDS cosmic shear, and KiDS lensing + BOSS+2dFLenS spec-
troscopic 3⇥2pt data results are over-plotted for the ⇤CDM model.
Unlike other comparisons in this work, these external survey data
have not been re-analyzed within a consistent model and prior space.
Thus, no direct or rigorous comparison can be made about data con-
sistency.
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h
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DES 3⇥2pt+All Ext.

BAO+BBN

Planck CMB

SH0ES Local h

FIG. 20. Marginalized constraints on h and ⌦m in the ⇤CDM model
are compared to the SH0ES local determination of h. Planck CMB
data and the combination of BAO and BBN data provide compara-
ble uncertainties on h compared to the local constraint. Adding DES
3⇥2pt to BAO and BBN improves the constraint on h slightly due
to 3⇥2pt providing additional information on ⌦m, while the combi-
nation of DES 3⇥2pt and all non-local external data provide a con-
straint on h that is a factor of 3-4 more powerful than the local deter-
mination.

0.674
+0.041
�0.032 with strong lensing when combining the TD-

COSMO+SLACS data set [97]). The Hubble tension may
indicate new physics and it is crucial to improve measure-
ments, revisit assumptions [e.g., 97, 98], check for consis-
tencies among different measurements, and invest in novel,
independent methods and probes [99, 100].

We can also constrain the value of h independently of CMB
data using a combination of BAO, BBN constraints on ⌦bh

2,
and DES 3⇥2pt measurements. Constraints on h and ⌦m in
⇤CDM are summarized in Fig. 20. The determination of h

using BAO and BBN is of similar constraining power to that
of the CMB and agrees very well with the CMB constraint on
h. Adding DES 3⇥2pt data slightly improves the constraint
on h and shifts it to higher values by about 1�. Combining
DES 3⇥2pt data with BAO, RSD, SNe Ia, and Planck CMB
(w/ lensing) leads to a marginalized constraint on h

h = 0.680
+0.004
�0.003 (0.681) (24)

that is 3-4 times more powerful than any current local mea-
surement of h. Constraints on other cosmological parameters
are summarized in Tables II & III. We find no significant im-
pact on the other cosmological parameters by adopting this
high-redshift anchor for the expansion rate vs a local prior on
the expansion rate from Ref. [93]. The final joint constraint
on h is consistent with the Planck- or BAO+BBN-only con-
straints and slightly less than 4� offset relative to the local h
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Comparison to other surveys
23

Figure 7. Survey footprints from DES Y3 (green) and KiDS-1000 (orange). The HSC-Y1 footprint (purple) overlaps KiDS in the North and DES in the
South complicating the modelling of cross-survey covariance. For this reason, we limit our joint-survey analysis to DES and KiDS.

Figure 8. The DES Y3 cosmic shear two-point correlation function, b+ (\ ) (left) and b� (\ ) (right), for 10 tomographic bin combinations (see label). The
fiducial DES Y3 scale cuts are indicated in pale blue, with the ⇤CDM-optimised scale cuts that are adopted in this cosmic shear analysis indicated in dark
blue. In the upper section of each panel we compare measurements from the full DES Y3 footprint (green) and the footprint with the KiDS-overlap region
excised (black) which covers 8% less area. The lower section of each panel shows the signal difference as a fraction of the best-fit theory. The analytical
covariance is calculated following Friedrich et al. (2021), accounting for the reduction in area.

measuring the b±(\) statistic46 in 4 tomographic bins for
the primary DES area where the KiDS-overlap region is ex-
cised, and the remaining DES data within the KiDS-overlap

46 For this analysis we measure b± (\ ) using T���C��� with the bin slop
parameter 1 = 0.1 (Jarvis et al. 2004) and adopt the fiducial DES Y3 scale
cuts. These cuts are more conservative than the ⇤CDM-optimised scale
cuts adopted in our cosmic shear analysis (see Figure 8). This difference is
unlikely to impact our conclusions, however, as any cross-survey covariance
will predominantly impact the larger angular scales that feature in both
analyses.

region. The additional KiDS depth and different sampling of
:-space with the COSEBIs statistic should serve to reduce
the cross-survey covariance estimated here. This analysis
therefore provides an upper limit of the cross-covariance be-
tween the DES and KiDS data vectors analysed in Section 3.

Figure 9 presents the FLASK-simulation estimated joint-
survey correlation matrix. We find the expected level of
intra-survey covariance between the different b+(\) and
b� (\) tomographic bins. For the cross-survey covariance,
the majority of correlation coefficients are within a threshold
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Comparison to other surveys

11

Survey Analysis Mean Marginal MAP+PJHPD Maximum Marginal

(8 �(8 f/ffid (8 �(8 f/fFid (8 �(8 f/fFid

Joint Fiducial 0.790+0.018
�0.014 0.00f 1.00 0.801+0.011

�0.023 0.62f 1.06 0.792+0.017
�0.018 0.11f 1.09

DES Y3 Fiducial (Full area) 0.802+0.023
�0.019 0.57f 1.31 0.816+0.015

�0.028 1.18f 1.34 0.803+0.022
�0.021 0.59f 1.35

DES Y3 Fiducial (KiDS-excised) 0.806+0.021
�0.020 0.74f 1.28 0.803+0.024

�0.016 0.64f 1.25 0.807+0.021
�0.022 0.76f 1.33

KiDS-1000 Fiducial 0.763+0.031
�0.023 �1.00f 1.68 0.776+0.029

�0.027 �0.53f 1.73 0.770+0.026
�0.031 �0.71f 1.77

Joint ⌃<a = 0.06eV 0.797+0.017
�0.014 0.39f 0.98 0.798+0.019

�0.014 0.49f 1.02 0.798+0.016
�0.018 0.47f 1.04

Joint Shared IA 0.792+0.018
�0.013 0.09f 0.98 0.804+0.015

�0.020 0.75f 1.09 0.795+0.016
�0.018 0.25f 1.06

Joint NLA (no-z) 0.792+0.016
�0.014 0.08f 0.94 0.788+0.020

�0.010 �0.19f 0.93 0.791+0.017
�0.015 0.02f 0.97

Joint TATT 0.771+0.025
�0.018 �0.88f 1.35 0.761+0.024

�0.036 �0.98f 1.84 0.775+0.022
�0.023 �0.66f 1.41

Joint Dark Matter %X (: ) 0.784+0.016
�0.015 �0.42f 0.95 0.785+0.014

�0.016 �0.36f 0.93 0.786+0.015
�0.016 �0.30f 0.97

Planck Fiducial 0.831+0.017
�0.017 1.04 0.834+0.019

�0.017 1.09 0.831+0.018
�0.018 1.10

Planck ⌃<a = 0.06eV 0.835+0.015
�0.016 0.97 0.838+0.013

�0.019 0.98 0.837+0.014
�0.018 1.02

Table 4. (8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.

0.7 0.75 0.8 0.85
S8 = �8(�m/0.3)0.5

Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.
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which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.
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Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.
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Table 4. (8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.

DES Y3+KiDS-1000

Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.
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Combining surveys: DES + KiDS10
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Figure 1. Cosmological constraints on the cosmological parameters f8 (left) and (8 (right) with the matter density ⌦m in flat-⇤CDM. We adopt a Hybrid
pipeline to re-analyse cosmic shear observations from DES Y3 (green) and KiDS-1000 (yellow) and conduct a joint-survey analysis of DES Y3 + KiDS-1000
(pink). The cosmic shear constraints can be compared to a re-analysis of the Planck Collaboration (2020) CMB observations (blue) using a common set of
cosmological parameters and priors. The marginalised posterior contours show the 68% (inner) and 95% (outer) credible intervals.

two surveys we assessed their consistency. We find a DES-
KiDS Hellinger distance offset in (8 of 1.0f (Equation 6),
and a �tension parameter shift in (8 � ⌦m of 0.8f (Equa-
tion 8), thus meeting the < 2.3f threshold for consistent
data sets.

For the DES Y3+KiDS-1000 joint-survey analysis, the
mean marginal values of (8, ⌦m and f8 and are found with
68% credible intervals to be

(8 = 0.790+0.018
�0.014

⌦m = 0.280+0.037
�0.046

f8 = 0.825+0.067
�0.073 ,

(12)

constituting a 2.0% precision measurement of (8 34. These
constraints are summarised in Figure 2 and tabulated in
Table 4 including the maximum marginal and MAP+PJ-
HPD values for (8. In all cases the model is found to
provide a good fit to the data (see Table 3). For our fiducial
joint-survey analysis we find a goodness of fit probability
?(j2 > j2

min |a) = 0.068. We also measure the goodness of
fit of the DES and KiDS data vector for the best-fit set of
parameters from the joint analysis. The DES goodness of
fit is essentially unchanged by the joint analysis. The KiDS
goodness of fit degrades slightly, but nevertheless passes the
goodness of fit requirement with ?(j2 > j2

min |a) = 0.035.
Reviewing the different mean marginal, maximum

marginal and MAP (8 values in Table 4, it is worth not-
ing that the 0.6f offset between the MAP and mean is ex-

?KiDS (j2 > j2
min |a) = 0.66 in the Li et al. (2023b) Hybrid analysis of

an improved KiDS-1000 shear catalogue that also adopts enhanced shear
and redshift calibration techniques. We note that the Li et al. (2023b)
(8 constraints are unchanged from this analysis, with the MAP+PJHPD
(8 = 0.776+0.029+0.002

�0.027�0.003. The second set of errors here account for system-
atic uncertainties within the shear calibration.

34 It is interesting to note that the joint-survey constraints on (8 are the
same as those estimated through a naive approach of taking the weighted
average of the individual survey constraints in Equation 11. We do not
recommend this naive approach for future survey combinations, especially
in cases where the analysis choices differ. A weighted average of the
published constraints from Amon et al. (2022); Asgari et al. (2021); Secco,
Samuroff et al. (2022) is offset from our joint-survey constraints at the level
of 1.6f. We discuss how the different analysis choices for each survey
team impacts the (8 constraints in Section 3.6, as quantified through mock
survey studies in Appendices C.4 and E.2.

Analysis j2
min #⇥ j2

red ? (j2
min |aeff )

DES Y3 (Full area) 284.2 5.4 1.06 0.231
DES Y3 (KiDS-excised) 288.3 4.6 1.07 0.192
KiDS-1000 88.3 7.1 1.30 0.048

DES Y3+KiDS-1000:

Fiducial 378.0 9.6 1.12 0.068
⌃<a = 0.06eV 376.6 9.7 1.11 0.074
Shared IA 382.2 8.0 1.12 0.057
NLA (no z) 379.3 8.8 1.12 0.065
TATT 371.5 12.3 1.11 0.087
Dark Matter %X (: ) 375.5 10.2 1.11 0.076

Table 3. Goodness of fit statistics for the Hybrid pipeline: the best-fit
j2

min, the estimated effective number of free parameters, #⇥, the reduced
j2

red = j2
min/a, where a is the number of degrees of freedom, and the

goodness of fit probability ? (j2 > j2
min |a) (see Section 2.7). The number

of data points for the DES, KiDS and joint-survey data vectors, are #data =
273, 75, 348 respectively. The upper section reports results for the fiducial
analysis of the individual and joint surveys. The lower section varies
one aspect of the Hybrid joint-survey analysis: fixing the neutrino mass
to ⌃<a = 0.06eV, sharing the IA parameters between the two surveys,
assuming an NLA IA model without redshift evolution (no z), adopting the
TATT IA model, and using a dark matter-only correction for the non-linear
model of the matter power spectrum, %X (: ) .

pected from our analysis of E�����E��������2 mocks in
Appendix E.2. This offset reflects the significant skew in the
marginal (8 posterior, in addition to a potential projection
effect which would arise when marginalising over a neu-
trino mass prior that is asymmetrical about the truth (see
Appendix C.3). In the discussion that follows we quote the
mean marginal values for (8, referring the reader to Table 4
for the alternative MAP+PJ-HPD or maximum marginal
metrics of the posterior.

3.2. Fixing the neutrino mass density
In our fiducial analysis we allow the neutrino mass density

to vary. Following Planck Collaboration (2020) we inves-
tigate adopting a fixed neutrino mass with ⌃<a = 0.06eV,
based on the minimum mass allowed by oscillation exper-
iments when assuming a normal mass hierarchy (Capozzi
et al. 2016). We find our constraints to be fairly insensitive

Cosmic shear - Hybrid analysis pipeline 
DES + KiDS 2023 (arXiv:2305.17173)
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Survey Analysis Mean Marginal MAP+PJHPD Maximum Marginal

(8 �(8 f/ffid (8 �(8 f/fFid (8 �(8 f/fFid

Joint Fiducial 0.790+0.018
�0.014 0.00f 1.00 0.801+0.011

�0.023 0.62f 1.06 0.792+0.017
�0.018 0.11f 1.09

DES Y3 Fiducial (Full area) 0.802+0.023
�0.019 0.57f 1.31 0.816+0.015

�0.028 1.18f 1.34 0.803+0.022
�0.021 0.59f 1.35

DES Y3 Fiducial (KiDS-excised) 0.806+0.021
�0.020 0.74f 1.28 0.803+0.024

�0.016 0.64f 1.25 0.807+0.021
�0.022 0.76f 1.33

KiDS-1000 Fiducial 0.763+0.031
�0.023 �1.00f 1.68 0.776+0.029

�0.027 �0.53f 1.73 0.770+0.026
�0.031 �0.71f 1.77

Joint ⌃<a = 0.06eV 0.797+0.017
�0.014 0.39f 0.98 0.798+0.019

�0.014 0.49f 1.02 0.798+0.016
�0.018 0.47f 1.04

Joint Shared IA 0.792+0.018
�0.013 0.09f 0.98 0.804+0.015

�0.020 0.75f 1.09 0.795+0.016
�0.018 0.25f 1.06

Joint NLA (no-z) 0.792+0.016
�0.014 0.08f 0.94 0.788+0.020

�0.010 �0.19f 0.93 0.791+0.017
�0.015 0.02f 0.97

Joint TATT 0.771+0.025
�0.018 �0.88f 1.35 0.761+0.024

�0.036 �0.98f 1.84 0.775+0.022
�0.023 �0.66f 1.41

Joint Dark Matter %X (: ) 0.784+0.016
�0.015 �0.42f 0.95 0.785+0.014

�0.016 �0.36f 0.93 0.786+0.015
�0.016 �0.30f 0.97

Planck Fiducial 0.831+0.017
�0.017 1.04 0.834+0.019

�0.017 1.09 0.831+0.018
�0.018 1.10

Planck ⌃<a = 0.06eV 0.835+0.015
�0.016 0.97 0.838+0.013

�0.019 0.98 0.837+0.014
�0.018 1.02

Table 4. (8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.

0.7 0.75 0.8 0.85
S8 = �8(�m/0.3)0.5

Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.
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Table 4. (8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.
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Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.
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FIG. 2. The measured w(✓) correlation functions for each tomographic bin i of the MagLim lens galaxies (indicated by the i, i label in each
panel). The best-fit ⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the solid line in the top part of each panel, while the bottom
part of each panel shows the fractional difference between the measurements and the model prediction, (wobs. � wth.)/�w (with y-axis range
±5�). In both the top and bottom part of each panel, 1� error bars are shown. Small angular scales where the linear galaxy bias assumption
breaks down are not used in the cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.

FIG. 3. The measured �t(✓) correlation functions for each tomographic bin combination using the MagLim sample. In each panel, the label
i, j refers to MagLim lens tomographic bin i and the source bin j The best-fit ⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the
solid line in the top part of each panel, with dotted curves indicating a negative model fit. The bottom part of each panel shows the fractional
difference between the measurements and the model prediction, (�obs.

t � � th.
t )/��t

(with y-axis range ±5�). In both the top and bottom part
of each panel, 1� error bars are included. Small angular scales where the linear galaxy bias assumption breaks down are not used in the
cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.

8

FIG. 2. The measured w(✓) correlation functions for each tomographic bin i of the MagLim lens galaxies (indicated by the i, i label in each
panel). The best-fit ⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the solid line in the top part of each panel, while the bottom
part of each panel shows the fractional difference between the measurements and the model prediction, (wobs. � wth.)/�w (with y-axis range
±5�). In both the top and bottom part of each panel, 1� error bars are shown. Small angular scales where the linear galaxy bias assumption
breaks down are not used in the cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.
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difference between the measurements and the model prediction, (�obs.

t � � th.
t )/��t

(with y-axis range ±5�). In both the top and bottom part
of each panel, 1� error bars are included. Small angular scales where the linear galaxy bias assumption breaks down are not used in the
cosmological analysis; these scales are indicated by grey shading. Bins 5 & 6 are not used in the final analysis.
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FIG. 5. The measured ⇠±(✓) correlation functions for each tomographic bin combination, with labels as described in Fig. 3. The best-fit
⇤CDM model from the fiducial 3⇥2pt analysis is plotted as the solid line in the top part of each panel, while the bottom part of each panel
shows the fractional difference between the measurements and the model prediction, (⇠obs.

± � ⇠th.
± )/�⇠± (with y-axis range ±5�). In both

the top and bottom part of each panel, 1� error bars are included. The shaded regions (both light and dark) indicate scales not used in the
fiducial analysis, primarily due to uncertainties in the impact of baryonic effects. The lighter shaded regions indicate scales that are used in an
⇤CDM-optimized analysis, which meets our criterion for scale cuts described in Sec. IV in ⇤CDM only.

criterion for limiting the contribution of any systematic error
to bias in the cosmological parameters. The threshold for this
criterion is intended to limit the expected total bias in the 2D
marginalized ⌦m–S8 plane from several independent poten-
tial sources of model bias to be contained within the 68% C.L.
region [129] (< 0.3� for any single contribution). The differ-
ence between the mean and best-fit values can give an indi-
cation of the magnitude of projection or non-Gaussian effects
in the marginalized parameter posteriors. The estimated im-
pact of projection or volume effects in the DES Year 3 3⇥2pt
posteriors are tested and summarized in Ref. [129]. We also
provide a 2D figure of merit (FoM) defined for two parame-
ters as FoMp1,p2 = (det Cov(p1, p2))

�1/2 [167, 168]. The
FoM is proportional to the inverse area of the confidence re-
gion in the space of the two parameters, and can be considered
a summary statistic that enables a straightforward comparison
of constraining power of experiments or analysis scenarios.

The analysis was designed and validated without access to
the true cosmological results to protect against confirmation or
observer bias. This process is described in detail in App. D.

A. Model

We model the observed projected (lens) galaxy density con-
trast �

i

obs(n̂) as a combination of projected galaxy density
contrast and modulation by magnification, �µ,

�
i

obs(n̂) = �
i

g(n̂) + �
i

µ
(n̂) (6)

for position vector n̂, where i and j represent the redshift bin.
The observed shear signal � is modeled as the sum of gravita-
tional shear, �G, and intrinsic alignments, ✏I,

�
j

↵
(n̂) = �

j

G,↵
(n̂) + ✏

j

I,↵(n̂) , (7)

with ↵ the shear components. While B-modes produced by
higher-order weak lensing effects are negligible for our analy-
sis, it is important to account for B-modes generated by intrin-
sic alignments in the computation of cosmic shear two-point
correlation functions. In Fourier space, this decomposition
can be written as

�
j

E(`) = 
j
(`) + ✏

j

I,E(`) , �
j

B(`) = ✏
j

I,B(`) , (8)
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.

Iij =

P
n mnxnixnjP

n mn
, (1)

where mn represents the mass of the nth particle and
xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the

positions of particles by their luminosity instead of mass.
Schneider et al. (2012) used the definition of reduced iner-
tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.

Consider the 3D case. Let the eigenvectors of the iner-
tia tensor be êa, êb, êc and the corresponding eigenvalues be
�a,�b,�c, where �a > �b > �c. The eigenvectors represent

c� 0000 RAS, MNRAS 000, 000–000

(MassiveBlack II: Khandai+ 2014; Tenneti+ 2014a,b)
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represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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noted that in this simulation, all particles of the given type
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Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the

positions of particles by their luminosity instead of mass.
Schneider et al. (2012) used the definition of reduced iner-
tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.

Consider the 3D case. Let the eigenvectors of the iner-
tia tensor be êa, êb, êc and the corresponding eigenvalues be
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Pgg = (b1 + Clens)
2
Pmm,HF + [NL bias]

�g = b1�

� = �

�g = b1� + ✏

� = � (166)

�g 6= �m

�g = F [�m, sij , . . .] ⇡ b1�m + · · · (167)
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ξgg(r) = b21〈δ|δ〉+ b1b2〈δ|δ
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1
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1
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γobs = γG + εn

〈γobs
i γobs

j 〉 = 〈γG
i γ

G
j 〉 (55)

γobs = γG + γI + εn

〈γobs
i γobs

j 〉 = 〈γG
i γ

G
j 〉+ 〈γG

i γ
I
j〉+ 〈γI

iγ
I
j〉 (56)

Galaxy bias:

Galaxy intrinsic alignments (IA):
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Figure 1. Top: Snapshot of the MBII simulation in a slice of thickness 2h�1Mpc at redshift z = 0.06. The bluish-white colored region
represents the density of the dark matter distribution and the red lines show the direction of the major axis of ellipse for the projected
shape defined by the stellar component. Bottom Left: Dark matter (shown in gray) and stellar matter (shown in red) distribution in the
most massive group at z = 0.06 of mass 7.2 ⇥ 1014h�1M�. The blue and red ellipses show the projected shapes of dark matter and
stellar matter of subhalos respectively. Bottom Middle: Dark matter and stellar matter distribution in a group of mass 3.8⇥1012h�1M�.
Bottom Right: Dark matter and stellar matter distribution in a group of mass 1.1⇥ 1012h�1M�.
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where mn represents the mass of the nth particle and
xni, xnj represent the position coordinates of the nth parti-
cle with 0 6 i, j 6 2 for 3D and 0 6 i, j 6 1 for 2D. It is to be
noted that in this simulation, all particles of the given type
(either dark matter or star particle) have the same mass.
Hence the mass of a particle has no e↵ect on the inertia ten-
sor. The inertia tensor can also be defined by weighting the

positions of particles by their luminosity instead of mass.
Schneider et al. (2012) used the definition of reduced iner-
tia tensor and investigated the radial dependance of halo
shapes in the N -body simulation by considering only parti-
cles within a given fraction of the virial radius. In this paper,
we are only concerned with the standard unweighted inertia
tensor definition for determining shapes and defer investiga-
tion of other definitions for a future study.

Consider the 3D case. Let the eigenvectors of the iner-
tia tensor be êa, êb, êc and the corresponding eigenvalues be
�a,�b,�c, where �a > �b > �c. The eigenvectors represent

c� 0000 RAS, MNRAS 000, 000–000

e.g. McDonald & Roy 2009; JB+ 2015; 2019; Schmitz, Hirata, JB+ 2019; Vlah+ 2020

galaxy positions (biasing)

galaxy shapes (intrinsic alignments), e.g. TATT model

– 3 –

PGI(k) ∼ −C1Pδδ(k) (31)

PII(k) ∼ C2
1Pδδ(k) (32)

PGI(k, z) ∼ −A(z, L)Pδδ(k, z) (33)

PII(k, z) ∼ A2(z, L)Pδδ(k, z) (34)

δg = b1δ + b2δ
2 + · · · (35)

γI = C1s+ C2s
2 + · · · (36)

δg = b1δ + b2δ
2 + bss

2 + · · · (37)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (38)

δg = b1δ + b2δ
2 + bss

2 + bvv
2
s + · · · (39)

γI = C1s+ C2(s× s) + Cδ(δs) + · · · (40)

δg = b1δ + b2δ
2 + bss

2 + · · · (41)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + · · · (42)

γI
ij = C1sij + C2(sikskj) + Cδ(δsij) + Cttij + · · · (43)

(44)

〈δg|δg〉 (45)

〈δg|γ〉 (46)

〈γ|γ〉 (47)

〈δg|δg〉 ∼ wgg (48)

〈δg|γ+〉 ∼ wg+ (GI) (49)

〈γ+|γ+〉 ∼ w++ (II) (50)

(51)
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δg(x) = F [δm(x), δm(y), ...]
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2
m(x) + · · ·
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vbc, δbc, θbc (64)

γI
ij(x) =C1sij(x) + C2sik(x)skj(x)+

C1δδ(x)sij(x) + C2δδ(x)sik(x)skj(x) + · · ·

F (k) =

∫

d3q1

(2π)3
Plin(q1)Plin(q2)K(q1,q2) (65)

Plin, PNL (66)

PII(k, z), PGI(k, z) (67)
∫

d3k (P × P ) (68)

→ A(k), B(k), . . . (69)

Ci, z, L, fred, . . . (70)

Implementation with FAST-PT and the Core Cosmology Library: 
McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 
Chisari et al (LSST-DESC) 2019 
FAST-PT on github: JoeMcEwen/FAST-PT 
CCL on github: LSSTDESC/CCL
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Simulating galaxy bias and IA 
with semi-analytic methods

ıŪîŔƘ�Ūİ�ȾƘĘŝĽȶîşîŔǊƤĽĊȿ�S��ŝŪđĘŔĽşı
Ɣ J]]SQX�SX^\SX]SL�]RJZN]�JXM�Y\SNX^J^SYX]�^Y�ZYSX^̐VSUN�QJVJbSN]�˟S˰N˰�O\YW�7>3�WYMNV]�

Y\�B0<]ˠ�^RJ^�VS`N�SX�RJVY]�YO�VJ\QN�MW̐YXVc�]SW_VJ^SYX]
Ɣ SXLV_MN�MNZNXMNXLN�YO�]RJZN]�JXM�JVSQXWNX^�YX�WJQXS^_MN˳�LYVY\˳ �^cZN˳�\NM]RSO^˳�˰˰˰
Ɣ LJVSK\J^N�80�WYMNV�^Y�WJ^LR�LYX]^\JSX^]�O\YW�YK]N\`J^SYX]
Ɣ LYX]^\_L^�VJ\QN�WYLU�QJVJbc�LJ^JVYQ]�SX�34B̐VSUN�`YV_WN]�aS^R�VNX]SXQ�˖�80

^Yc�WYMNV�OY\�QJVJbc
]RJZN]�JXM�Y\SNX^J^SYX]

2Y]WYVYQSLJV�BSW_VJ^SYX�ͅ�7>3�̾�B0<�QJVJbSN]Model for galaxy positions, 
shapes, and orientations 

    Large, gravity-only simulations with halo information

Fig: K. Hoffman

Halotools-IA 
Halotools on github: astropy/halotools 
Van Alfen, Campbell, JB, Lanusse, Leonard, Hearin+ 2023 

In progress: Building a neural net-based emulator for simulation-based modeling
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The future present is exciting!

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Dark Energy Survey

Kilo Degree Survey

Hyper Suprime Cam

Euclid

Vera Rubin Obs.

Roman Space Tel.



Vera C. Rubin Observatory
• Legacy Survey of Space and Time 

(LSST) 
• LSSTCam (3.2 Gpix) on 8.4m 

telescope, Cerro Pachón, Chile 
• ~1/2 of sky (18-25k deg2) 
• 10 year dedicated survey, starting 

next year 
• ~20 billion galaxies 
• 8 science collaborations: 

“Dark Energy” (DESC), also 
includes dark matter, gravity, 
inflation, neutrinos, etc.

22~10 deg2 field-of-view
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Beyond two-point statistics

Fig: K. Hoffman

Dark matter map from 
DES weak lensingN. Jeffrey, Dark Energy Survey
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Beyond two-point statistics

Extracting more information: 

• Peaks in the mass map 
(e.g. Zürcher et al 2022) 

• The distribution of convergence, 
including moments 
(e.g. Gatti et al 2022) 

• Three-point statistics 
(e.g. Secco et al 2022) 

• Field-level inference 
(e.g. Bayer, Seljak, Modi 2023) 

• Other novel statistics 
(e.g. Gatti et al 2023)

Fig: K. 
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Figure 9. Left: A comparison between the fiducial ⌦m � (8 constraints inferred in this study using the combination of angular power spectra and peak counts
(CLs + Peaks) and the results from other studies using DES Y3 data. The constraints labelled with ‘(comp)’ have been altered to enable a better comparison
with our analysis (see Section 6.4). The DES Y3 3x2pt (comp) analysis does not pass the criteria defined in Dark Energy Survey Collaboration et al. (2021)
and has been centered at the fiducial cosmology adapted in the simulations (⌦m = 0.26, f8 = 0.84) (see Section 6.4). Right: Another comparison between the
fiducial ⌦m � (8 constraints inferred in this study using the combination of angular power spectra and peak counts (CLs + Peaks) and the results from external
studies using data other than the DES Y3 data. The contour levels in both plots indicate the 68% and 95% confidence regions of the constraints.

our results and the other studies at the 1f level in all cosmological
parameters constrained in this work.

• Considering all constrained parameters in this study we find
our constraints to be statistically consistent with the results from
the KIDS 1000 (Heymans et al. 2021) survey at the 0.7f level.
Furthermore, we record a mild tension of 1.5f between our findings
and the results from Planck 2018 (Aghanim et al. 2020).

• We find that the combination of angular power spectra and peak
counts tightly constrains the amplitude of the galaxy intrinsic align-
ment signal to �IA = �0.03±0.23 and breaks the typically observed
(8��IA degeneracy, greatly improving cosmological constraints. We
further notice that the addition of cross-tomographic peaks signifi-
cantly contributes to the constraining power of weak lensing peaks
on �IA.

Having witnessed the potential of using peak counts to constrain
cosmology from cosmic shear data, we look ahead to the application
of the developed methodology to future data such as the DES Year
6 release. Such future surveys will be able to resolve the small scale
structure of the LSS even better than in current data. We plan to
include a treatment of baryonic physics that allows us to incorporate
and forward-model small-scale baryonic e�ects in our simulation
pipeline and that will allow us to include more small-scale informa-
tion, considerably improving the cosmological constraining power.
Another way to further increase the amount of cosmological infor-
mation available is given by including other summary statistics such
as Minkowski functionals or minima counts (Z21).
A compromise between computational cost and the number of cos-
mological parameters that can be constrained had to be made. This
led to the decision to only measure the parameters⌦m and f8 that are
constrained most strongly by weak lensing data. We hope to extend
our analysis to the full FCDM parameter space in a future project.
We observed that the combination of angular power spectra and

peak counts puts tight constraints on �IA and breaks the degener-
acy between (8 and �IA. However, we assume the rather simple
non-linear intrinsic alignment (NLA) model to incorporate galaxy
intrinsic alignment in this work. It is left to future studies to check
if this remains true in the context of more complex alignment mod-
els such as the Tidal Alignment and Tidal Torquing (TATT) model
(Blazek et al. 2019).
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6 release. Such future surveys will be able to resolve the small scale
structure of the LSS even better than in current data. We plan to
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peak counts puts tight constraints on �IA and breaks the degener-
acy between (8 and �IA. However, we assume the rather simple
non-linear intrinsic alignment (NLA) model to incorporate galaxy
intrinsic alignment in this work. It is left to future studies to check
if this remains true in the context of more complex alignment mod-
els such as the Tidal Alignment and Tidal Torquing (TATT) model
(Blazek et al. 2019).
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Conclusions
• Studies of weak lensing and galaxy clustering 

are a powerful cosmological probe for current 
and future projects. 

• Astrophysical modeling will be critical for 
future analyses, e.g. galaxy IA and biasing. 

• New experiments starting now, combined with 
new statistical and modeling approaches, 
make the coming decade a very exciting time 
for observational cosmology!
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Figure 4: The halo-based method for creating galaxy catalogs with realistic IA is shown for two
scenarios. On the left is the preferred strategy when both main and sub-halo shapes are available,
allowing both central and satellite shapes to reflect their local environment, parameterized by the
misalignment angle (✓MA) between the galaxy and halo orientations. On the right is an alternative
strategy for when only the main halo shape is available: the orientation of the satellite galaxy can
be parameterized with respect to its separation from the central galaxy. Reproduced from [56].

Bolshoi simulation [59] to demonstrate its e↵ectiveness and have shown that it can reproduce
galaxy clustering and alignment statistics measured from IllustrisTNG with an appropriate choice
of HOD and IA parameters – see Figure 5. After the initial method is validated, the corresponding
IA modules will be made publicly available with Halotools. As we develop new functionality, we
will make further public releases.

One noteworthy benefit of this approach for simulated IA is its speed. As an approximate
benchmark for our preliminary code, which has not yet been optimized, we used a single core to
generate a catalog of 50,000 galaxies with IA properties. The initialization of the Halotools model
took ⇠ 10 seconds. This step must only be done once, even if multiple realizations are produced and
the HOD and IA parameters are changed. The recurring time to produce a new galaxy catalog was
⇠ 1-10 seconds, depending on which IA prescription was used. Using Halotools internal methods,
we are able to calculate the shape correlation functions on this catalog in ⇠ 2 seconds.

This impressive speed enables multiple new applications. Large-volume N-body simulations can
be quickly populated with realistic galaxies, and this procedure can be done for many di↵erent IA
and HOD scenarios. Similarly, multiple galaxy realizations can be generated with the same starting
halo catalog, allowing the estimate of covariances for any statistic that can be computed from the
simulated galaxy catalogs (including those without simple analytic forms). Finally, the method is
fast enough to directly use as a model in data analysis. For instance, we are able to constrain HOD
and IA parameters by generating a new realization of galaxies at each point in parameter space.
The few seconds of recurring time required for this “model” is feasible for inference with MCMC,
even in high-dimensional parameter spaces. Indeed, by incorporating this IA methodology into
the Halotools package, we will enable a broader range of simulation-based modeling, including the
creation of model emulators (e.g. [60, 61]).

To allow additional model flexibility and to enable the use of simulations where some halo
information is unavailable, we will augment the halo-based model with tidal field information. This
approach is inspired by the TATT e↵ective perturbative model developed by PI Blazek [28] and
builds on our recent work on the Direct Alignment Field Fitting (DAFF) technique [39]. DAFF
connects the measured tidal field from a cosmological simulation with the galaxy alignments using
the relevant response parameters (Eq. 2). This mapping can be performed in either direction. With
a hydrodynamic simulation, we can constrain the IA parameters as a function of galaxy properties.

8



Thank you!



Extra Slides

27



“Spectroscopic” surveys
Sloan Digital Sky Survey
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Combining surveys: DES + KiDS

11

Survey Analysis Mean Marginal MAP+PJHPD Maximum Marginal

(8 �(8 f/ffid (8 �(8 f/fFid (8 �(8 f/fFid

Joint Fiducial 0.790+0.018
�0.014 0.00f 1.00 0.801+0.011

�0.023 0.62f 1.06 0.792+0.017
�0.018 0.11f 1.09

DES Y3 Fiducial (Full area) 0.802+0.023
�0.019 0.57f 1.31 0.816+0.015

�0.028 1.18f 1.34 0.803+0.022
�0.021 0.59f 1.35

DES Y3 Fiducial (KiDS-excised) 0.806+0.021
�0.020 0.74f 1.28 0.803+0.024

�0.016 0.64f 1.25 0.807+0.021
�0.022 0.76f 1.33

KiDS-1000 Fiducial 0.763+0.031
�0.023 �1.00f 1.68 0.776+0.029

�0.027 �0.53f 1.73 0.770+0.026
�0.031 �0.71f 1.77

Joint ⌃<a = 0.06eV 0.797+0.017
�0.014 0.39f 0.98 0.798+0.019

�0.014 0.49f 1.02 0.798+0.016
�0.018 0.47f 1.04

Joint Shared IA 0.792+0.018
�0.013 0.09f 0.98 0.804+0.015

�0.020 0.75f 1.09 0.795+0.016
�0.018 0.25f 1.06

Joint NLA (no-z) 0.792+0.016
�0.014 0.08f 0.94 0.788+0.020

�0.010 �0.19f 0.93 0.791+0.017
�0.015 0.02f 0.97

Joint TATT 0.771+0.025
�0.018 �0.88f 1.35 0.761+0.024

�0.036 �0.98f 1.84 0.775+0.022
�0.023 �0.66f 1.41

Joint Dark Matter %X (: ) 0.784+0.016
�0.015 �0.42f 0.95 0.785+0.014

�0.016 �0.36f 0.93 0.786+0.015
�0.016 �0.30f 0.97

Planck Fiducial 0.831+0.017
�0.017 1.04 0.834+0.019

�0.017 1.09 0.831+0.018
�0.018 1.10

Planck ⌃<a = 0.06eV 0.835+0.015
�0.016 0.97 0.838+0.013

�0.019 0.98 0.837+0.014
�0.018 1.02

Table 4. (8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing [IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. �(8 quantifies the offset of each statistic’s value for (8 relative to the Hybrid joint analysis, mean marginal value (Fid

8 = 0.790, as a fraction of
the 1f error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error fFid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with ⌃<a = 0.06eV. We do not list �(8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.

0.7 0.75 0.8 0.85
S8 = �8(�m/0.3)0.5

DES Y3+KiDS-1000

DES Y3

KiDS-1000

HSC Y3 �

HSC Y3 C�

Planck

P lanck �m� = 0.06eV

DES Y3+KiDS-1000 �m� = 0.06eV

DES Y3+KiDS-1000 shared IA

DES Y3+KiDS-1000 NLA (no-z)

DES Y3+KiDS-1000 TATT

DES Y3+KiDS-1000 Dark Matter P�(k)

Figure 2. Summary of mean marginalised 1D constraints on (8, ⌦m and f8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
[IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, ⇠✓ , (Dalal et al. 2023) and the two-point shear correlation function, b± (\ ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with ⌃<a = 0.06eV (blue diamond). The numerical parameter values for
(8 are listed in Table 4.

“In both our mock and data studies, the most significant 
changes arise from the choice of intrinsic alignment (IA) model.”
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Cosmic shear - Hybrid analysis pipeline 
DES + KiDS 2023 (arXiv:2305.17173)

15

Figure 5. Cosmological constraints on (8 and the matter density ⌦m from DES Y3 (left) and KiDS-1000 (right): comparing our fiducial Hybrid re-analysis
of the two cosmic shear surveys (pink) to analyses that adopt the original DES-like pipeline (green) and KiDS-like pipeline (yellow). The DES-like analysis
of DES Y3 (green left) replicates the ⇤CDM-optimised cosmic shear only constraints from Amon et al. (2022); Secco, Samuroff et al. (2022). The KiDS-like
analysis of KiDS-1000 (yellow right) replicates the COSEBIs cosmic shear constraints from Asgari et al. (2021). The marginalised posterior contours show
the 68% (inner) and 95% (outer) credible intervals.
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Figure 6. Constraints on (8 from the KiDS-1000 (yellow), DES Y3 (green)
and HSC Year 3 (purple) surveys, with 68% credible intervals shown as hor-
izontal bars. In the upper section we compare the published headline results
from each survey (circles). In the case of HSC we show constraints from
two cosmic shear statistics, labelled b± (\ ) (Li et al. 2023a) and ⇠✓ (Dalal
et al. 2023). In the case of DES we show both the primary ‘⇤CDM opti-
mised’ cosmic shear result from Amon et al. (2022); Secco, Samuroff et al.
(2022), which includes additional shear ratio data (green circle), and the
cosmic shear-only constraint (‘no SR’, green cross). In the middle section
we present constraints from a DES-like re-analysis of KiDS-1000 (yellow
square) and a KiDS-like re-analysis of DES Y3 (green square), demon-
strating the differences between a TATT with H������ analysis (DES-like)
and an NLA (no-z) with HMC���2016 analysis (KiDS-like). The lower
section presents the results from a unified Hybrid pipeline re-analysis of
each survey (stars), along with a shaded vertical bar for reference.

small-scale baryon feedback effects using the Le Brun et al.
(2014) C����-OWLS:8.7 hydrodynamical simulation as an
example of extreme feedback. For the KiDS-like analyses
we find a DES-KiDS Hellinger distance offset in (8 of 2.0f,
and a �tension parameter shift in (8 � ⌦m of 1.8f, within
the < 2.3f threshold for consistent data sets. Given that
we have shown in Appendix D that the KiDS-like pipeline’s
use of M�������� leads to a systematic underestimate of the
constraining power, we choose to not present joint-survey
constraints using the KiDS-like pipeline.

Comparing the Hybrid and DES-like analyses, we find

higher (8 values with the Hybrid setup for both surveys.
This is predicted by our E�����E��������2 mock survey
analysis in Appendix E where changing the non-linear power
spectrum model from H������ to HMC���2020 combined
with a change in the IA model from TATT to NLA-z in-
creases (8 by ⇠ 1f. Including a free baryon feedback
parameter in the analysis raises (8 by an additional ⇠ 0.5f
when the underlying baryon feedback model is given by
OWLS-AGN (see Table 12 and also Secco et al. 2022, where
the impact of these analysis choices are documented for the
fiducial DES Y3 analysis). In Figure 6 we show that the
34% increase in (8 uncertainty in the DES-like re-analysis
of DES Y3 compared to the headline results from Amon
et al. (2022); Secco, Samuroff et al. (2022) arises from our
decision to focus on a cosmic shear-only analysis, excluding
the additional shear ratio data used in the original studies
(denoted no SR). For the DES-like analyses we find a DES-
KiDS Hellinger distance offset in (8 of 1.2f, and a �tension
parameter shift in (8 � ⌦m of 0.7f, within the < 2.3f
threshold for consistent data sets. Given the offset between
the recovered and input (8 parameters in our DES-like analy-
sis of joint-survey E�����E��������2-based mocks, how-
ever, we choose to not present joint-survey constraints using
the DES-like pipeline. In our conclusions, we discuss the
implications of these differences for future survey analyses.

3.7. A comparison of constraints with HSC Year 3
In Figure 6 we compare the DES Y3 and KiDS-1000 (8

constraints to the cosmic shear analysis of HSC Year 3 data
(Li et al. 2022). The upper section presents the headline
HSC results from the two-point shear correlation function
analysis, b±(\) (Li et al. 2023a), and the shear angular power
spectrum analysis, ⇠EE

n n (✓) (Dalal et al. 2023). These results
are in good agreement with the headline results42 from DES

42 A reminder that the published headline results presented in Figure 6
use different statistics to define an (8 value from each analysis. The HSC
team chooses to quote the maximum marginal (8 value. The KiDS team
chooses to quote the MAP+PJ-HPD. The DES team chooses to quote the
mean marginal (8 value. Table 4 demonstrates how these three value
estimates differ for the joint DES+KiDS analysis and we refer the reader to
the discussion in Section 2.6 on the merits and challenges associated with
estimating each value statistic.
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1 Introduction

Observational cosmology has entered a new era of precision measurement. Current and up-
coming surveys [1–5] are enabling us to probe large-scale structure in more detail and over
larger volumes, and hence to better constrain the underlying cosmological model. A parallel
effort is underway to understand the astrophysical effects that are both signals and contami-
nants in these measurements. For example, weak gravitational lensing has become a powerful
and direct probe of the dark matter distribution [6, 7], but it also suffers from systematic
uncertainties, such as galaxy intrinsic alignments (IA), which must be mitigated in order
to make use of high-precision measurements. Similarly, connecting observable tracers (e.g.
in spectroscopic surveys) with the underlying dark matter requires a description of the bias
relationship [8–12] and the effect of redshift-space distortions (RSDs) [13–15]. Developments
in CMB measurements provide another illustration, as the range of observables has expanded
from early initial detections of temperature anisotropies by COBE [16–24]. Current and fu-
ture measurements [25–30] will be able to investigate more subtle effects, such as the kinetic
Sunyaev-Zel’dovich (kSZ) [31, 32] and CMB spectral distortions [33, 34].

While modern cosmology has advanced significantly using our understanding from linear
perturbation theory, nonlinear contributions become significant at late times and at smaller
scales. In the quasi-linear regime, many relevant cosmological observables are usefully de-
scribed using perturbation theory at higher order. Significant effort has been devoted to
understanding structure formation via a range of perturbative techniques (e.g. [35–45]). In
this work, we consider integrals in standard perturbation theory (SPT), although the methods
and code we develop have a broader range of applications.

The next-to-leading-order (“1-loop”) corrections in these perturbative expansions are typ-
ically expressed as two-dimensional mode-coupling convolution integrals, which are generically
time consuming to evaluate numerically. Recent algorithmic developments have dramatically
sped up these computations for scalar quantities – those with no dependence on the direction
of the observer, such as the matter density or real-space galaxy density. The new algorithms
[46, 47] take advantage of the locality of evolution in perturbation theory, the scale invariance
of cold dark matter (CDM) structure formation, and the Fast Fourier Transform (FFT); and
work is underway to apply them to 2-loop power spectra as well [48]. In a previous paper, we
introduced the FAST-PT implementation of these methods in Python [46].

However, there are many interesting 1-loop convolution integrals for tensor quantities –
those with explicit dependence on the observer line of sight, such as those arising for redshift-
space distortions. In this case, we need convolution integrals with “tensor” kernels:1

I(k) =

Z
d
3q1

(2⇡)3
K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2)P (q1)P (q2) , (1.1)

where K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) is a tensor mode-coupling kernel, k = q1 + q2, k = |k|,
and P (q) is the input signal – typically the linear matter power spectrum – logarithmically
sampled in q. Due to the dependence on the direction of k, the decomposition of these kernels
is more complicated than in the scalar case. In this work, we generalize our FAST-PT algorithm

1The kernel K can be expressed as a sum of polynomials in the relevant dot products. “Tensor” refers
to the general transformation properties of the cosmological quantities being considered under a symmetry
operation – in this case, rotations in SO(3). For instance, the momentum density is a rank 1 tensor (a vector)
while the IA field is a rank 2 tensor. The scalar case (rank 0) considered in [46] is thus a specific application
of this more general framework.

– 2 –

to evaluate these tensor convolution integrals, achieving O(N log N) performance as in the
scalar case.

This paper is organized as follows: in §2 we provide the mathematical basis for our
method (§2.1), introduce our algorithm (§2.2), and discuss divergences that may arise and
how they are resolved (§2.3). In section §3 we apply our method to several examples: the
quadratic intrinsic alignment model (§3.1); the Ostriker-Vishniac effect (§3.2); the kinetic
polarization of CMB (§3.3); and the 1-loop redshift-space power spectrum (§3.4). Section
§4 summarizes the results. An appendix contains derivations of the relevant mathematical
identities. The Python code implementing this algorithm and the examples presented in this
paper is publicly available at https://github.com/JoeMcEwen/FAST-PT.

2 Method

In this section we extend the FAST-PT framework to include the computation of convolution
integrals with tensor kernels in the form of Eq. (1.1)

Our approach is similar to the scalar version of FAST-PT. We first expand the kernel into
several Legendre polynomial products – the explicit dependence on the direction k̂ requires
an expansion in three angles rather than one. Second, products of Legendre polynomials are
written in spherical harmonics using the addition theorem, where the required combinations of
spherical harmonics are constrained by Wigner 3j symbols and preserve angular momentum.
Third, the integral of each term in the expansion can be further transformed into a product
of several one-dimensional integrals in configuration space, which can be quickly performed
by assuming a (biased) log-periodic power spectrum and employing FFTs.

We will first provide the theory in §2.1 and then briefly introduce our algorithm in §2.2.
Finally, in §2.3 we will discuss physical divergence problems that can arise and the way to
solve them through the choice of appropriate biasing of the log-periodic power spectrum.

2.1 Transformation To 1D Integrals

In general, the kernel function K can be decomposed as a summation of terms

K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2) =
X

`1,`2,`,↵,�

A
↵�
`1`2`

P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q
↵
1 q

�
2 , (2.1)

where P` are the Legendre polynomials, and the A
↵�
`1`2`

coefficients specify the components
of a particular kernel. For general angular dependences the sum may require an infinite
number of terms. However the kernels that appear in CDM perturbation theory and galaxy
biasing theory are composed of a finite number of terms in a polynomial expansion. This
decomposition leads us to consider integrals of the form

f(k) =

Z
d
3q1

(2⇡)3
P`(q̂1 · q̂2)P`1(k̂ · q̂2)P`2(k̂ · q̂1)q

↵
1 q

�
2P (q1)P (q2) . (2.2)

The product of Legendre polynomials can be decomposed into spherical harmonics by
the addition theorem. Using the result presented in Appendix B.1, we can write the product
of three Legendre polynomials in terms of spherical harmonics and Wigner 3j symbols:

P`(q̂1 · q̂2)P`2(q̂1 · k̂)P`1(q̂2 · k̂)

=
X

J1,J2,Jk

C
J1J2Jk
`1`2`

X

M1,M2,Mk

YJ1M1
(q̂1)YJ2M2

(q̂2)YJkMk
(k̂)

✓
J1 J2 Jk

M1 M2 Mk

◆
, (2.3)
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where

aJ1J2Jk
⌘

s
(2J1 + 1)(2J2 + 1)

4⇡(2Jk + 1)

✓
J1 J2 Jk

0 0 0

◆
. (2.11)

The derivation of Eqs. (2.10) and (2.11) is provided in Appendix (B.2). Fourier transforming
back to k-space, we obtain

T
↵�
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where in the third equality we have used the plane wave expansion (Eq. A.5), and in the fourth
equality used the orthogonality relation between spherical harmonics (Eq. A.3). Combining
the results from Eq. (2.9), (2.12), (2.11), we arrive at
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where J1 + J2 + Jk must be even for the 3j symbol to be non-zero, and J
↵�
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(r) is defined by
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Combining Eq. (2.13) and (2.3) we can rewrite the integral (2.2) as
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– 5 –

McEwen, Fang, Hirata, JB 2016; Fang, JB, McEwen, Hirata 2017 
FAST-PT on github: JoeMcEwen/FAST-PT

• Python; easy to use and integrate into other code. 
• In DES and LSST analysis software. 
• Euclid, Roman in progress. 
• DESI? IR Res for BAO and improved RSD in progress.
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Chisari, …, JB+ 2019 (DESC Collaboration) 
CCL on github: LSSTDESC/CCL 

• Core theory calculations 
for LSST (and other) 
analyses 

• Incorporates FAST-PT 
for nonlinear 
calculations.
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Why go beyond linear theory?
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Fig. 4.— The reconstructed lensing map on a zenithal equal-area projection. The map has been smoothed with a Gaussian kernel with
FWHM = 2 degrees.

sources in total using the mask employed in the Planck

lensing analysis, and 2 ⇥ 107 in sources in the nominal
SPT region. We make no attempt in estimating the red-
shift distribution of the galaxies, and hence cannot make
a theoretical prediction of the cross-correlation ampli-
tude. Instead, the lensing maps reconstructed using var-
ious `min,max, (`, m) cuts, masking, and calibrations are
cross-correlated with the galaxies to probe the sensitivity
of the reconstructed lensing map to these variations.
Starting with the WISE galaxy catalogue, we first

project all the galaxies onto a HEALPix map of Nside =
2048, apply a simple binary mask (value=1 if there is
at least one galaxy in the pixel, otherwise 0), and com-
pute the mean number of galaxies hni. Using this, the
overdensity map is calculated:

� =
n � hni

hni , (24)

and the cross-spectrum is obtained by correlating this
map with the lensing map using PolSpice

44(Szapudi
et al. 2001; Chon et al. 2004).
We derive the uncertainties by cross-correlating the

WISE galaxy density map with all the 198 simulated
�̂ maps and computing the variance for each bin. This
method neglects the common sample variance between
� and the galaxies G. To assess the importance of this
term, we compare this with errors obtained using the
“block jackknife” method (where the variance is com-
puted by masking various “blocks” of the sky area used
in the analysis) with 128 equal area patches. We acquire
similar results from this method and conclude that the
original estimate is adequate.
Cross-spectra between WISE galaxy density and var-

ious CMB-derived �̂ are shown in Figure 6. The CMB
lensing maps used are: SPT+Planck, SPT-only, Planck -
only over 2500 deg2, and Planck -only over 67% of the

44 http://www2.iap.fr/users/hivon/software/PolSpice

sky. We additionally sketch a power-law of the form
pL = a(L/L0)�b, with parameters a = 2.15 ⇥ 10�8,
b = 1.35, L0 = 490, which are obtained by performing
a least-squares fit to the cross-spectrum between full-
sky Planck and WISE in the range 50 < L < 1864.
We then fit this power-law with an amplitude parame-
ter ⌘

�G = C
�G
L /pL to other cross-spectra. We obtain

best-fit amplitudes of ⌘
�G = 0.94+0.04

�0.04 for SPT+Planck,

⌘
�G = 0.93+0.04

�0.04 for SPT-only, ⌘
�G = 1.00+0.02

�0.01 for

Planck-only over ⇠ 67% of the sky, and ⌘
�G = 1.02+0.08

�0.08

for Planck-only over 2500 deg2. Similar to the Ĉ
��
L auto-

spectrum, instead of focusing the discussion on the phys-
ical interpretations of the amplitude, which is dependent
on factors such a photometric redshift uncertainties, type
of galaxies considered, and the cosmological model used,
we focus on the sensitivity of the cross-spectrum to small
variations in the reconstruction pipeline.

6.3. Cross-Correlation with CIB

We also calculate the cross-correlation between the
SPT+Planck lensing map and the 545 GHz channel from
Planck45, which traces fluctuations in the CIB. The re-
sult is shown in Figure 8, and the same measurement
made by Planck (Planck Collaboration et al. 2014) is also
presented as a reference. We observe a strong correlation
between �̂ and the 545 GHz map that is consistent with
a theoretical model constructed using a modified black
body and employing a single spectral energy distribution
model as demonstrated in (Planck Collaboration et al.
2015c).
The SPT 150 GHz map and the Planck 143 GHz map

contain some emission from the CIB, and leakage of this
signal into the lensing map will bias the cross-correlation
with the 545 GHz map. To estimate the level of this bias,
we calculate the �̂(T545, T545)⇥T545 bispectrum and scale

45 HFI_SkyMap_545_2048_R2.02_full.fits

shear bias, PSF 

intrinsic alignments  

baryons 

photo-z

CMB systematics  

broad projection 

independent

self-calibration and improved statistics

galaxy bias 

photo-z 

observing weights

e.g. DES Y3 2023; Krolewski+ 2021 (unWISE + Planck)

SPT+Planck; Omori+ 2017
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. There are no sig-
nificant correlations between the E- and the B-mode maps in Fig. 6
and Fig. 7: we find that the Pearson correlation coefficients10 are all
consistent with zero, as expected for maps where systematic effects
are not dominant. Comparing the four tomographic B-mode maps

10 The Pearson correlation coefficient two maps X and Y is defined as
h(X � X̄)(Y � Ȳ )i/(sX sY ), where X̄ and Ȳ are the mean pixel values for
the two maps, the hi averages over all pixels in the map, and s indicates the
standard deviation of the pixel values in each map.

in Fig. 7, there is no obvious correlation between the structures in
one map with maps of neighboring redshift bins. We find that the
Pearson correlation coefficient between the second and third (third
and fourth) redshift bins for the B-mode maps is 8 (5.5) times lower
than that for the E-mode maps. The E and B-mode maps for the
lowest redshift bin 0.2 < z < 0.43 have similar levels of S/N, which
is expected since the lensing signal at low redshift is weak and the
noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the
simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-

MNRAS 000, 000–000 (0000)

Maps and masks
• Maps built on resolution Nside = 4096, then 

masked and downgraded to 2048, the analysis 
resolution 

• Joint mask for areas of insufficient depth, as in 
Jack’s analysis 

• K map is smoothed with Gaussian of FWHM = 
5.4’: required to cut off K noise from small scales 

• ‘Fake catalogues’ also built for clustering 
measurements with treecorr (as this requires 
catalogues instead of maps) 

• Catalog item created at centre of each map 
pixel 

• Weight of each object equal to pixel value 

• Same for masks, from which fake random 
catalogues are created
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Semi-analytic sims consistent 
with hydro sims8 D. Campbell et al.
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Figure 8. Left: two-point correlation functions o�set by 1-dex for clarity Middle: ellipticity-direction (ED) correlation function Right: ellipticity-ellipticity
(EE) correlation function. In each panel, the points with error bars are measurements made on the Illustris TNG300-1 simulation with error bars estimated
using jackknife re-sampling of the box. The lines with shaded regions are halo model predictions made by populating a DMO simulation with mock galaxies
where the shaded region shows the variation from random realizations of the model. The three colors are for three stellar mass threshold samples.

Figure 9. corner plot of central and satellite alignment posteriors by fitting
EE and ED.
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log("thresh) log("0) log("1) log("min) U

9.0 11.55 12.35 11.37 1

9.5 11.80 12.60 11.61 1

10.0 12.05 12.85 11.93 1

10.5 12.68 13.48 12.54 1

Table C1. HOD parameters for TNG300-1

MNRAS 000, 1–8 (2018)

Figure 5: Results from a simulated galaxy catalog produced with our HOD-IA method (solid lines
with shaded variance) are compared to Illustris-TNG (data points) for galaxy clustering (left panel)
and the ellipticity-position correlation function (right panel). Di↵erent colors indicate di↵erent
stellar mass threshold samples, and vertical o↵sets have been added for clarity. IA and HOD
parameters have been chosen to approximately match Illustris-TNG results. Reproduced from [56].

Alternatively, with tidal field information from a dark-matter-only simulation, we can create an
IA field which can be used to assign alignments to galaxies. The DAFF simulation technique will
augment the halo-based approach, providing an IA estimate even if some halo information is not
available (e.g. in low resolution simulations). Similarly, we will use DAFF to better understand the
connection between the simulated IA properties and analytic models based on the tidal field.

In addition to developing this method and making it publicly available with Halotools, we will
generate large mock galaxy catalogs with IA, based on the SkySim5000 simulated catalog. The
current version of SkySim5000 is an updated version of the DESC CosmoDC2 simulated catalog
from the Outer Rim simulation [62]), providing a state-of-the-art catalog of dark matter halos
populated with realistic galaxies across 5000 sq. deg. (roughly 30% of the area LSST will cover).
All generated galaxy catalogs will be made available to DESC using the Generic Catalog Reader
tool (GCRCatalogs), allowing seamless integration into all relevant analyses. These catalogs will
enable a range of modeling and analysis validation for DESC during the critical “Science Readiness”
period. In the second year of this project, an updated version of SkySim5000, based on the new
Last Journey simulation [63] will be available. We will provide updated simulated catalogs and will
use this version as the basis for detailed studies on IA as a cosmic probe (discussed in Sec. 3.3).

3.3 Objective 3: Novel probes of galaxy formation and the dark sector

To maximize the scientific return and discovery potential for future data sets, we must look beyond
the current core statistics and standard cosmological model. To do so in a systematic way, we are
guided by the perturbative modeling framework for galaxy intrinsic alignments and bias, described
in Eqs. 1-2. This framework is determined by the cosmological quantities that can impact galaxy
observables and is subject to the required symmetries of the system. Measuring the associated
parameters allows us to determine the astrophysical response of galaxies (i.e. their location and
shape) to cosmological conditions. Similarly, these models were constructed by making important

9

Van Alfen, Campbell, JB, Lanusse, Leonard, Hearin+ 2023 


