La Thuile 2024

Search for dark mesons decaying to top and bottom quarks with the ATLAS detector

Jochen Jens Heinrich for the ATLAS collaboration 08 March, 2024

See ATLAS-CONF-2023-021

Imagine...

... a new strongly-coupled "dark" sector of vector-like fermions ... which transform under both the new dark group and the EW part of the SM group ... and also permits Higgs interactions

In <u>arXiv:1809.10183</u> and <u>arXiv:1809.10184</u> models containing a strongly-coupled, SU(2) dark flavour symmetry preserving dark sector is developed and explored \Rightarrow Stealth Dark Matter [arXiv:1503.04203]

JJ Heinrich Slide 1/13

Production of Dark Pions

- Dark pions are always pair-produced and decay to pure SM states
- The dark sector is free of constraints from precision EW observables and Higgs coupling measurements

- Dark pion production trivially depends on $m_{\pi_D}/m_{\rho_D} = \eta$ (important parameter!)
- In this work focus on gaugephobic dark pion decay behaviour

JJ Heinrich Slide 2/13

LI Heinrich

Slide 3/13

Dark Pion Decays and Analysis Signature

- Dark pions decay promptly back to SM states
- Branching fractions only depend on "gaugephobic-nes" and the mass of the dark pion
- Decays to t's and b's dominate once kinematically open ⇒ Consider ttbb and tttb final states
- Conduct search in the all-hadronic channel (search in 1-lepton channel is forthcoming)

LI Heinrich

Slide 4/13

Premise and Online Event Selection

- This work is the first direct collider search for this type of model
- Existing limits from reinterpretation of ATLAS and CMS results are fairly weak
- Scanning 2-dimensional parameter space depending on η and m_{π_D}
- High jet-multiplicity + dark pions from heavy ρ_D decay
 ⇒ Use lowest unprescaled H_T triggers
- H_T triggers reach full efficiency for large m_{π_D}
- Good agreement between simulated onset and real onset
 - \Rightarrow Onset has minimal impact on systematics
- All-hadronic channel sensitive to models with low η and low to medium dark pion masses
- 1-lepton channel more sensitive to higher η values

Dark Pion Reconstruction

- Dark pion reconstruction using reclustering of anti- $k_t R = 0.4$ PFlow jets
- R-parameter needs to strike balance between π_D reconstruction and QCD susceptibility
- R = 1.2 has best overall performance for targeted signal points

Slide 5/13

Preselection

- Event quality cuts that ensure operational detector
- Veto events containing any loose electrons or muons
- Require $H_T > 1150 \text{ GeV}$
- At least six jets with $p_T > 25$ GeV to suppress QCD
- At least 3 b-tagged jets
- At least two reclustered jets with mass > 190 GeV

Process	Generator	PDF	Showering	Tune	Cross section
tī	PowhegBox v2	NNPDF3.0nlo	Ρυτηία8	A14	NNLO+NNLL
$t\bar{t}$ +HF	Powheg Box Res	NNPDF3.0nlo	Ρυτηία8	A14	NNLO
V + jets	Sherpa v2.2.11	NNPDF3.0nnlo	Sherpa	Def.	NLO
Single top	PowhegBox v2	NNPDF3.0nlo	Ρυτηία8	A14	NLO+NNLL
tītī	MadGraph5_aMC@NLO v2.4.3	NNPDF3.1nlo	Ρυτηία8	A14	NLO
$t\bar{t}V$	MadGraph5_aMC@NLO v2.3.3	NNPDF3.0nlo	Ρυτηία8	A14	NLO
tīH	PowhegBox v2	NNPDF3.0nlo	Ρυτηία8	A14	NLO
Other $t\bar{t} + X$	MadGraph5_aMC@NLO	NNPDF2.31o	Ρυτηία8	A14	NLO
Multiboson	Sherpa v2.2.1/v2.2.2	NNPDF3.0nnlo	Sherpa	Def.	NLO

Sample	Yield	Percent SM MC sum
tī	8756.9	78.0
V + jets	1688.3	15.0
$t\bar{t} + X$	405.6	3.6
SingleTop	375.0	3.3
Multiboson	0.8	< 1
SM sum	11226.5	100
SU2L-45-400	804.7	
SU2L-35-500	867.3	
SU2L-25-500	549.5	
Data	67339	

• Dominant background from QCD

 \Rightarrow Data-driven background estimate using ABCD method

Slide 6/13

Define kinematic variables

- Define a set of variables motivated by signal kinematics
 - $\Delta R(j, b_2)$: Distance between a RC jet and the second closest b-jet
 - $m_{bb}/p_{T,bb}$: For the closest b-jet pair to an RC jet to suppress QCD
 - $m_{\text{jet,R=1.2}}$: Mass of the RC jet, main discriminant
- Select ABCD regions based on m_{bb} / p_{T,bb} and m_{jet,R=1.2}
- Subdivided into nine bins based on jet masses

Sub-leading RC jet

QCD Multijet Estimation

- Use a 4-variable generalisation of the ABCD method developed and used in <u>arXiv:1801.02052</u>
- Two tags and their slashed "anti-tags" are introduced:
 - bb_i -tag: i-th R = 1.2 jet has 2 b-tagged jets within R = 1.0
 - $\pi_{D,i}$ -tag: i-th R = 1.2 jet has a mass within a certain window
- Permutations of all 4 tag states define 16 regions

- Extrapolate from orange regions and use 2-tag correction factors for 1-tag correlations
- Signal region S (red) has all four tags applied
- 3-tag regions K, L, M and N (pink) are validation regions
- Perform independent estimates for each SR bin

JJ Heinrich Slide 8/13

Tag selections

	Tag	Variable	Tag selection	Anti-tag selection
Both large- R jets	1	$m_{bb}/p_{T,bb}$	> 0.25	
Leading large- R jet	bb_1	$\Delta R(j, b_2)$	< 1.0	≥ 1.0
Sub-leading large- R jet	bb_2	$\Delta R(j, b_2)$	< 1.0	≥ 1.0
Leading large- $\!R$ jet	$\pi_{D,1}$	$m_{\rm jet,R=1.2}$	[300 - 325 GeV, 325 - 400 GeV, > 400 GeV]	$\leq 300GeV$
Sub-leading large- R jet	$\pi_{D,2}$	$m_{\rm jet,R=1.2}$	[250 - 300 GeV, 300 - 350 GeV, > 350 GeV]	$\leq 250 GeV$

Validation of Multijet Estimate

- Have good agreement in all 36 VRs
 - \Rightarrow Method works very well with no uncontrolled correlations

JJ Heinrich Slide 9/13

LI Heinrich

Slide 10/13

Systematic Uncertainties

- Main source of systematic uncertainty is the data-driven multijet estimation
- Study closure in all VR bins independently via *k*-factors $k_{VR} = (\text{data-MC})/\text{QCD}$
- Also consider statistical uncertainty on *k*-factors σ_k

Systematic:
$$\sigma_{ABCD} = \sqrt{\left(1 - \prod_{VR} k_{VR}\right)^2 + \sum_{VR} \sigma_{k_{VR}}^2}$$

	SR300_250	SR300_300	SR300_350
Non-closure uncertainty	40%	45%	1.4%
Stat. uncert. on k-factors	37%	35%	39%
Total Multijet Uncertainty	55%	57%	39%
	SR325_250	SR325_300	SR325_350
Non-closure uncertainty	16%	28%	28%
Stat. uncert. on k-factors	29%	29%	29%
Total Multijet Uncertainty	33%	40%	41%
	SR400_250	SR400_300	SR400_350
Non-closure uncertainty	34%	3.2%	29%
Stat. uncert. on k-factors	37%	38%	38%
Total Multijet Uncertainty	51%	38%	48%

- All remaining systematic uncertainties propagated to multijet estimate
- With exception of ttbar modeling uncertainty (up to 6%) and some jet systematics (up to 4%), all systematics are small
 - \Rightarrow Expected since multijet estimate constrains to data

Statistical Analysis

- Perform a profile likelihood fit over all signal regions
- Nuisance parameters below 1% impact are pruned away
 - \Rightarrow Excellent agreement of data and predicted background

Slide 11/13

Results

- Setting limits on dark pion masses given predicted xsections
 - \Rightarrow Observed limits very similar to expected
- Huge gain in coverage over existing limits (grey area) based on reinterpretation
- First direct constraints to this type of model by a collider experiment
- See the full results <u>here</u>
- Expect 1-lepton channel to increase coverage extensively

Summary

- Searching for gaugephobic dark pion decays with signatures *ttbb* or *tttb* in the all-hadronic channel
- Reconstruction of dark pions from reclustered jets
- Cut-based selection with SR binned in large-R jet masses
- Data-driven estimate of QCD multijet background that passes validation tests
- Limits significantly extend existing coverage
- Link to publication

Postdoc contract ending in October this year! Looking for a new member of your group? ⇒ linkedin.com/in/jochen-jens-heinrich

JJ Heinrich Slide 13/13

BACKUP MATERIAL

Link to publication

JJ Heinrich Slide 14/13

The Dark Meson Sector of Stealth Dark Matter [arXiv:1503.04203]

We can explore the phenomenology of such models which has never been done in ATLAS or CMS!

- Higgs interactions break the global (species) symmetries of the dark sector
 - \Rightarrow Allows dark pions to decay to SM
- The dark sector is free of constraints from precision EW observables and Higgs coupling measurements
 - \Rightarrow Very weak existing limits

Consider models with two flavours of dark fermions \Rightarrow dark pions and one set of dark vector mesons

• Vector-like nature of dark sector permits two possibilities of gauging global flavour symmetry leading to two distinct models of kinetic mixing

SU(2) kinetic mixing: U(1) kinetic mixing:

 $SU(2)_{\text{global flavour}} \leftrightarrow SU(2)_L$ $SU(2)_{\text{global flavour}} \leftrightarrow SU(2)_R$

JJ Heinrich Slide 15/13

LI Heinrich

Slide 16/13

Existing constraints

- Phys. Rev. D **105**, 015008 (2022) tested the sensitivity of several ATLAS and CMS analyses
- Solid line is 95% CL exclusion, dashed corresponds to 68% CL
- Even weaker limits for $SU(2)_R$
 - \Rightarrow Vast parameter space still open!
- Other analyses fail to be sensitive because they are optimised for high target masses, expect single production or require large *E*_T^{miss}
- Strong constraints in models with $\eta > 0.5$ from dilepton searches

 \Rightarrow Only consider models with $\eta < 0.5$ for analysis!

Object Definitions

Small-R Jets

Small-R Jets:

- R = 0.4 Anti- k_t EMPFlow Jets
- $p_T > 20 \text{ GeV}$
- $|\eta| < 2.8$
- JVT working point: tight
- ForwardJVT working point: tight

B-tagged Jets:

- $|\eta| < 2.5$
- Only for small-R jets
- DL1r tagger with 77% efficiency working point

Large-R Jets

Reclustered Jets:

- *R* = 1.2 and recluster
 - R = 0.4 Anti- k_T EMPFlow Jets
- *m* > 60 GeV

Leptons

Baseline electron (for veto):

- ID: MediumLH
- Isolation: None
- $p_T > 10 \text{ GeV}$
- $|\eta| < 1.37 \text{ OR } 1.52 < |\eta| < 2.47$

Baseline muon (for veto):

- ID: Medium
- Isolation: None
- $p_T > 10 \text{ GeV}$
- $\eta < 2.7$

• Consider estimate \hat{K} in region K with standard ABCD

$$\hat{K} = \frac{J \cdot D}{B}$$

+-		Region labels					
<u>e</u>		TA.1601	$\pi_{d,1}bb_1$	$\pi_{a,1}bb_1$	$\pi_{d,1}bb_1$		
$\prod_{i=1}^{n} \pi_{d,i}$	$_2bb_2$	J	K	L	S		
B ₹	$_2bb_2$	В	D	н	N		
$\overline{\alpha}$ $\pi_{d,i}$	bb_2	E	F	G	М		
p Ja	2 bK 2	А	С	- I	0		
21	⊼ 1st large-R jet						

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$\hat{K} = \frac{J \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{J \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}$$

JJ Heinrich Slide 18/13

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$\hat{K} = \frac{I \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{I \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}$$

• In a three-variable ABCD estimate with two correlation factors \hat{K} would be computed via

$$\hat{K} = \frac{I \cdot C}{A} \cdot k_{\pi_{D,1},\pi_{D,2}} \cdot k_{\pi_{D,1},bb_2} = \frac{I \cdot C}{A} \cdot \frac{F \cdot A}{C \cdot E} \cdot \frac{D \cdot A}{B \cdot C} = \frac{I \cdot D \cdot F \cdot A}{B \cdot C \cdot E}$$

JJ Heinrich Slide 18/13

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$\hat{K} = \frac{J \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{J \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}$$

• In a three-variable ABCD estimate with two correlation factors \hat{K} would be computed via

$$\hat{K} = \frac{I \cdot C}{A} \cdot k_{\pi_{D,1},\pi_{D,2}} \cdot k_{\pi_{D,1},bb_2} = \frac{I \cdot C}{A} \cdot \frac{F \cdot A}{C \cdot E} \cdot \frac{D \cdot A}{B \cdot C} = \frac{I \cdot D \cdot F \cdot A}{B \cdot C \cdot E}$$

• For a four-variable ABCD estimate \hat{S} one needs to consider six correlation factors correcting the traditional estimate \hat{S}'

$$\hat{S} = \hat{S}' \cdot k_{\pi_{D,1},bb_1} \cdot k_{\pi_{D,2},bb_2} \cdot k_{\pi_{D,1},bb_2} \cdot k_{\pi_{D,2},bb_1} \cdot k_{\pi_{D,1},\pi_{D,2}} \cdot k_{bb_1,bb_2}$$

JJ Heinrich Slide 18/13

Constraints on ρ_D (see <u>arXiv:1809.10184</u>)

- Plot shows the constraints on the kinetic mixing between SM and ρ_D through absence of a dilepton reonance
- Coloured lines correspond to the $SU(2)_L$ model varying the number of colours N_D
- For $\eta < 0.5$, there is virtually no constraint on ρ_D when $N_D \leq 4$

JJ Heinrich Slide 19/13