La Thuile 2024

Search for dark mesons decaying to top and bottom quarks with the ATLAS detector

Jochen Jens Heinrich for the ATLAS collaboration 08 March, 2024

[See ATLAS-CONF-2023-021](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-021/)

Slide 1/13

... a new strongly-coupled "dark" sector of vector-like fermions

Imagine...

... which transform under both the new dark group and the EW part of the SM group ... and also permits Higgs interactions Mesons in QCD "Dark" mesons -barvons • *SU*(N_{dark}) (Here: $N_{\text{dark}} = 4$) • $SU(3)_{\text{colour}}$ • Exact *SU*(2) isospin symmetry • Exact *SU*(2) custodial symmetry • Fermions allowed to transform • Fermions allowed to transform $\pm \rho'$ s under EW and "dark colour" under EW and QCD • Triplet of pions (π^-, π^0, π^+) ,... • Triplet of dark pions $(\pi_D^-, \pi_D^0, \pi_D^+)$,... $\frac{\pi}{\pi}$ =

In [arXiv:1809.10183](https://arxiv.org/abs/1809.10183) and [arXiv:1809.10184](https://arxiv.org/abs/1809.10184) models containing a strongly-coupled, *SU*(2) dark flavour symmetry preserving dark sector is developed and explored \Rightarrow Stealth Dark Matter [\[arXiv:1503.04203\]](https://arxiv.org/pdf/1503.04203.pdf) JJ Heinrich

Production of Dark Pions

- Dark pions are always pair-produced and decay to pure SM states
- The dark sector is free of constraints from precision EW observables and Higgs coupling measurements

- Dark pion production trivially depends on $m_{\pi_D}/m_{\rho_D} = \eta$ (important parameter!)
- In this work focus on gaugephobic dark pion decay behaviour

JJ Heinrich Slide 2/13

JJ Heinrich Slide 3/13

Dark Pion Decays and Analysis Signature

- Dark pions decay promptly back to SM states
- Branching fractions only depend on "gaugephobic-nes" and the mass of the dark pion
- Decays to t's and b's dominate once kinematically open \Rightarrow Consider ttbb and tttb final states
- Conduct search in the all-hadronic channel (search in 1-lepton channel is forthcoming)

Premise and Online Event Selection

- This work is the first direct collider search for this type of model
- Existing limits from reinterpretation of ATLAS and CMS results are fairly weak
- Scanning 2-dimensional parameter space depending on η and $m_{\pi D}$
- High jet-multiplicity + dark pions from heavy ρ_D decay \Rightarrow Use lowest unprescaled H_T triggers
- *H_T* triggers reach full efficiency for large $m_{\pi D}$
- Good agreement between simulated onset and real onset
	- ⇒ Onset has minimal impact on systematics
- All-hadronic channel sensitive to models with low *η* and low to medium dark pion masses
- 1-lepton channel more sensitive to higher *η* values

JJ Heinrich Slide 4/13

Dark Pion Reconstruction

- Dark pion reconstruction using reclustering of anti- k_t $R = 0.4$ PFlow jets
- R-parameter needs to strike balance between π_D reconstruction and QCD susceptibility
- $R = 1.2$ has best overall performance for targeted signal points

INIVERSITY OF ORECON

Preselection

- Event quality cuts that ensure operational detector
- Veto events containing any loose electrons or muons
- Require $H_T > 1150$ GeV
- At least six jets with $p_T > 25$ GeV to suppress QCD
- At least 3 b-tagged jets
- At least two reclustered jets with mass > 190 GeV

• Dominant background from QCD

⇒ Data-driven background estimate using ABCD method

JJ Heinrich

Slide 6/13

Define kinematic variables

- Define a set of variables motivated by signal kinematics
	- Δ*R*(*j*,*b*₂): Distance between a RC jet and the second closest b-jet
	- $m_{bb}/p_{T,bb}$: For the closest b-jet pair to an RC jet to suppress QCD
	- $m_{\text{jet,R=1.2}}$: Mass of the RC jet, main discriminant
- Select ABCD regions based on $m_{bb}/p_{T,bb}$ and $m_{jet,R=1.2}$
- Subdivided into nine bins based on jet masses

Slide 7/13

QCD Multijet Estimation

- Use a 4-variable generalisation of the ABCD method developed and used in [arXiv:1801.02052](https://arxiv.org/abs/1801.02052)
- Two tags and their slashed "anti-tags" are introduced:
	- *bb_i*-tag: i-th *R* = 1.2 jet has 2 b-tagged jets within *R* = 1.0
	- $\pi_{D,i}$ -tag: i-th *R* = 1.2 jet has a mass within a certain window
- Permutations of all 4 tag states define 16 regions

- Extrapolate from orange regions and use 2-tag correction factors for 1-tag correlations
- Signal region S (red) has all four tags applied
- 3-tag regions K, L, M and N (pink) are validation regions
- Perform independent estimates for each SR bin

JJ Heinrich Slide 8/13

Tag selections

Validation of Multijet Estimate

- Have good agreement in all 36 VRs
	- ⇒ Method works very well with no uncontrolled correlations

JJ Heinrich Slide 9/13

JJ Heinrich Slide 10/13

Systematic Uncertainties

- Main source of systematic uncertainty is the data-driven multijet estimation
- Study closure in all VR bins independently via *k*-factors $k_{VR} = (data-MC)/QCD$
- Also consider statistical uncertainty on *k*-factors *σ^k*

Systematic:
$$
\sigma_{ABCD} = \sqrt{\left(1 - \prod_{VR} k_{VR}\right)^2 + \sum_{VR} \sigma_{k_{VR}}^2}
$$

- All remaining systematic uncertainties propagated to multijet estimate
- With exception of ttbar modeling uncertainty (up to 6%) and some jet systematics (up to 4%), all systematics are small
	- ⇒ Expected since multijet estimate constrains to data

Statistical Analysis

- Perform a profile likelihood fit over all signal regions
- Nuisance parameters below 1% impact are pruned away
	- ⇒ Excellent agreement of data and predicted background

Results

- Setting limits on dark pion masses given predicted xsections
	- ⇒ Observed limits very similar to expected
- Huge gain in coverage over existing limits (grey area) based on reinterpretation
- First direct constraints to this type of model by a collider experiment
- See the full results [here](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-021/)
- Expect 1-lepton channel to increase coverage extensively

Summary

- Searching for gaugephobic dark pion decays with signatures *ttbb* or *tttb* in the all-hadronic channel
- Reconstruction of dark pions from reclustered jets
- Cut-based selection with SR binned in large-R jet masses
- Data-driven estimate of QCD multijet background that passes validation tests
- Limits significantly extend existing coverage
- [Link to publication](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-021/)

Postdoc contract ending in October this year! Looking for a new member of your group? ⇒ [linkedin.com/in/jochen-jens-heinrich](#page-0-0)

JJ Heinrich Slide 13/13

BACKUP MATERIAL

[Link to publication](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-021/)

UNIVERSITY OF OREGON

JJ Heinrich

Slide 14/13

The Dark Meson Sector of Stealth Dark Matter [\[arXiv:1503.04203\]](https://arxiv.org/pdf/1503.04203.pdf)

We can explore the phenomenology of such models which has never been done in ATLAS or CMS!

- Higgs interactions break the global (species) symmetries of the dark sector \Rightarrow Allows dark pions to decay to SM
- The dark sector is free of constraints from precision EW observables and Higgs coupling measurements
	- \Rightarrow Very weak existing limits

Consider models with two flavours of dark fermions \Rightarrow dark pions and one set of dark vector mesons

• Vector-like nature of dark sector permits two possibilities of gauging global flavour symmetry leading to two distinct models of kinetic mixing

SU(2) kinetic mixing: $SU(2)$ _{global flavour} $\leftrightarrow SU(2)_L$ *U*(1) kinetic mixing: $SU(2)_{\text{global flavour}} \leftrightarrow SU(2)_R$

JJ Heinrich Slide 15/13

JJ Heinrich Slide 16/13

Existing constraints

- Phys. Rev. D **105**[, 015008 \(2022\)](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.105.015008) tested the sensitivity of several ATLAS and CMS analyses
- Solid line is 95% CL exclusion. dashed corresponds to 68% CL
- Even weaker limits for *SU*(2)*^R*
	- \Rightarrow Vast parameter space still open!
- Other analyses fail to be sensitive because they are optimised for high target masses, expect single production or require large *E* miss *T*
- Strong constraints in models with *η* > 0.5 from dilepton searches

⇒ Only consider models with *η* < 0.5 for analysis!

Object Definitions

Small-R Jets

Small-R Jets:

- $R = 0.4$ Anti- k_t EMPFlow Jets
- $p_T > 20$ GeV
- $|\eta| < 2.8$
- JVT working point: tight
- ForwardJVT working point: tight

B-tagged Jets:

- $|\eta| < 2.5$
- Only for small-R jets
- DL1r tagger with 77% efficiency working point

Large-R Jets

Reclustered Jets:

- $R = 1.2$ and recluster
	- $R = 0.4$ Anti- k_T EMPFlow Jets
- \bullet *m* > 60 GeV

Leptons

Baseline electron (for veto):

- ID: MediumLH
- Isolation: None
- $p_T > 10 \text{ GeV}$
- $|\eta|$ < 1.37 OR 1.52 < $|\eta|$ < 2.47

Baseline muon (for veto):

- ID: Medium
- Isolation: None
- $p_T > 10 \text{ GeV}$
- η < 2.7

• Consider estimate \hat{K} in region K with standard ABCD

JJ Heinrich

Slide 18/13

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$
\hat{K} = \frac{J \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{J \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}
$$

UNIVERSITY OF OREGON

JJ Heinrich

Slide 18/13

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$
\hat{K} = \frac{I \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{I \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}
$$

• In a three-variable ABCD estimate with two correlation factors *K*ˆ would be computed via

$$
\hat{K} = \frac{J \cdot C}{A} \cdot k_{\pi_{D,1}, \pi_{D,2}} \cdot k_{\pi_{D,1}, bb_2} = \frac{J \cdot C}{A} \cdot \frac{F \cdot A}{C \cdot E} \cdot \frac{D \cdot A}{B \cdot C} = \frac{J \cdot D \cdot F \cdot A}{B \cdot C \cdot E}
$$

JJ Heinrich

Slide 18/13

• Consider estimate \hat{K} in region K with standard ABCD

• This is correct if $\pi_{D,1}$ and $\pi_{D,2}$ uncorrelated, otherwise correct with $k_{\pi_{D,1},\pi_{D,2}} = \frac{F \cdot A}{C \cdot E}$

$$
\hat{K} = \frac{I \cdot D}{B} \cdot \frac{F \cdot A}{C \cdot E} = \frac{I \cdot D}{B} \cdot k_{\pi_{D,1}, \pi_{D,2}}
$$

• In a three-variable ABCD estimate with two correlation factors *K*ˆ would be computed via

$$
\hat{K} = \frac{I \cdot C}{A} \cdot k_{\pi_{D,1}, \pi_{D,2}} \cdot k_{\pi_{D,1}, bb_2} = \frac{I \cdot C}{A} \cdot \frac{F \cdot A}{C \cdot E} \cdot \frac{D \cdot A}{B \cdot C} = \frac{I \cdot D \cdot F \cdot A}{B \cdot C \cdot E}
$$

• For a four-variable ABCD estimate *S*ˆ one needs to consider six correlation factors correcting the traditional estimate \hat{S}^{\prime}

$$
\left(\hat{S} = \hat{S}' \cdot k_{\pi_{D,1}, bb_1} \cdot k_{\pi_{D,2}, bb_2} \cdot k_{\pi_{D,1}, bb_2} \cdot k_{\pi_{D,2}, bb_1} \cdot k_{\pi_{D,1}, \pi_{D,2}} \cdot k_{bb_1, bb_2}\right)
$$

JJ Heinrich Slide 18/13

Constraints on ρ_D (see [arXiv:1809.10184\)](https://arxiv.org/abs/1809.10184)

- Plot shows the constraints on the kinetic mixing between SM and ρ_D through absence of a dilepton reonance
- Coloured lines correspond to the $SU(2)_L$ model varying the number of colours N_D
- For η < 0.5, there is virtually no constraint on ρ_D when $N_D \leq 4$

JJ Heinrich Slide 19/13