

Search for a new Z' gauge boson via the $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm} \nu$ process with the ATLAS detector

Chihao Li On behalf of the ATLAS collaboration Mar 8th , 2024

Introduction

- To address the problems in the Standard Model, Grand Unified Theories are required with a larger unification group containing new symmetries.
 - Predicts at least one extra neutral gauge boson, Z'.
- The lepton family numbers L_e , L_μ , L_τ are conserved under the SM.
 - $L_1 \equiv L_e L_{\mu}, L_2 \equiv L_e L_{\tau}$, and $L_3 \equiv L_{\mu} L_{\tau}$ are anomaly-free and can be gauged with a new neutral gauge boson introduced to the theory.
 - Coupling to the electron is strictly constrained by the very precise $e^+e^- \rightarrow e^+e^-$ LEP data.
- Still some potential and opportunities for the $U(1)_{L_{\mu}-L_{\tau}}$ model.

Simplest Z' model

- $U(1)_{L_{\mu}-L_{\tau}}$ symmetry is broken with resulting a massive gauge boson Z'.
 - Z' only couples to the leptons of the second and third generation.
 - Model contains two additional parameters $\{g_{Z'}, M_{Z'}\}$
- Potentially address some observed anomalies. Answer the dark matter and neutrino mass problems.
 - Muon anomalous magnetic moment, PhysRevLett.126.141801
 - <u>Semileptonic B decay, arXiv:2206.07501v2</u>
 - Neutrino mass, arXiv:hep-ph/0411190

Constraints on Z' parameter space

Previous search with 4μ final state on LHC: <u>CMS</u>, 2019(77.3 fb^{-1}), <u>ATLAS</u>, 2023(139 fb^{-1}) First time to use the 3μ final state to search this Z'.

 $Z^{(*)}$

Z'

Signal signature

Signal process: $pp \rightarrow W^{(*)} \rightarrow Z' \mu v \rightarrow \mu \mu \mu v$

• Experimental signature with a final state of 3μ plus missing transverse momentum

Candidate events in the signal region:

- Exactly three isolated muons
- Large missing transverse momentum
- Focusing on the low mass region ([5, 81] GeV)

Background modeling

- Prompt background: events containing prompt muons, i.e. Vector boson pair production
 - Estimated by MC simulation
- Non-prompt background: events containing at least one non-prompt muon from hadron decays or misidentification of jets, i.e. Drell-Yan process, top quark pair production
 - Estimated by fake factor method with real data

Multivariate analysis

Combine several discriminating variables into a single discriminant

- \rightarrow Parameterized deep neural network (pDNN):
- One classifier to handle the whole parameter grid
- Convenient to extrapolate to other signal models by varying the mass parameter

Statistical interpretation

Events / bir

- p_0 -values scan in mass range [5, 81] GeV. No significant data excess.
- Set observed (expected) upper limits at 95% CL on cross section.

Combination

Statistical combination with the previous search using neutral-current Drell-Yan process (4 μ final state) \rightarrow Common parameter of interest: coupling parameter $g_{Z'}$

Significant improvement relative to the previous search (Up to 40% in the high mass region)

Summary

- Search for a $L_{\mu} L_{\tau}$ gauge boson Z' using charged-current Drell-Yan production for the first time at the LHC.
- This search benefits from much higher Z' production cross section compared to the previous search using the neutral-current Drell-Yan process, and has better sensitivity especially in the high mass region.
- The most stringent exclusion limits to date are set in the allowed parameter space of the Z' coupling strength and $m_{Z'}$.
- Using the 3μ final state is expected to be more sensitive in the high mass range beyond Z peak with experiments in high luminosity.

Thank you for your attention!

Phenomenology study

- Sensitivity of this Z' search on LHC using 2μ , 3μ (Simulation only) and 4μ (CMS, 2019) final states.
- The 2μ and 3μ results are optimized with neural network.
- The 3µ result gets significant improvement with the implement of neural network and it's expected to provide the best sensitivity in the high mass region. 12

Signal information & efficiency

Information of the simulated Z' signals

$m_{Z'}$ [GeV]	$g_{Z'}$	$\Gamma_{Z'}$ [GeV]	σ [fb]	$m_{Z'}$ [GeV]	8Z'	$\Gamma_{Z'}$ [GeV]	σ [fb]
5	0.0050	9.553×10^{-6}	28.13	9	0.0065	3.016×10^{-5}	23.22
15	0.0080	7.636×10^{-5}	15.52	19	0.0085	1.092×10^{-4}	10.67
23	0.0090	1.482×10^{-4}	7.397	27	0.0095	1.939×10^{-4}	5.086
31	0.0110	2.985×10^{-4}	4.183	35	0.0120	4.011×10^{-4}	3.001
39	0.0150	6.983×10^{-4}	2.751	45	0.0230	1.894×10^{-3}	2.768
51	0.0370	5.556×10^{-3}	2.803	54	0.0480	9.901×10^{-3}	2.863
60	0.0850	3.450×10^{-2}	3.145	66	0.1800	0.1702	5.483
69	0.2500	0.3432	7.451	75	0.3500	0.7311	9.222
81	0.4000	1.031	8.891				

$m_{Z'}$ [GeV]	5	19	39	60	81
Number of identified muons (looser muons) = $3(< 4)$	2.7%	7.0%	11.8%	18.8%	36.2%
$p_{\mathrm{T},i}(i=1,2,3) > 20, 10, 7 \text{ GeV}$	33.6%	52.8%,	87.4%	85.7%	97.9%
Number of b -jets = 0	98.5%	97.5%	98.5%	98.4%	97.9%
$E_{\rm T}^{\rm miss} > 15 { m GeV}$	64.1%	72.5%	60.1%	72.2%	92.6%
$m_{Z_1} < 85 \text{ GeV}$	100%	99.2%	97.8%	72.5%	43.1%
Combined event selection efficiency	0.6%	2.6%	6.0%	8.3%	13.8%

Selection efficiency