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PDFs of a muon
The muon (or electron) is an elementary particle. 
At zeroth order in perturbation theory it carries all the momentum of the beam.

The production of heavy states with MX ~ √s is dominated 
by the annihilation µ+ µ- → X

(e.g. QED pair production of heavy particles)
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PDFs of a muon
The muon (or electron) is an elementary particle. 
At zeroth order in perturbation theory it carries all the momentum of the beam.

The production of heavy states with MX ~ √s is dominated 
by the annihilation µ+ µ- → X

(e.g. QED pair production of heavy particles)

For processes well above threshold, the 
contribution from collinear virtual bosons  
emitted from the muons can become dominant.

“The muon collider is a weak boson collider”

The amplitudes for collinear splitting and hard scattering can be factorised

if

[Cuomo, Vecchi, Wulzer 1911.12366, …]

Collinear Factorization

(m = mC)on-shell Q2 = k2 - mC2
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PDFs of a muon
The muon (or electron) is an elementary particle. 
At zeroth order in perturbation theory it carries all the momentum of the beam.

The production of heavy states with MX ~ √s is dominated 
by the annihilation µ+ µ- → X

(e.g. QED pair production of heavy particles)

This can be described in terms of generalised Parton Distribution Functions, like for proton colliders:

For processes well above threshold, the 
contribution from collinear virtual bosons  
emitted from the muons can become dominant.

“The muon collider is a weak boson collider”
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Unlike for protons, since the muon is elementary this can be done from first principles.

PDFs of a muon
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Unlike for protons, since the muon is elementary this can be done from first principles.

The boundary condition is set by    fµ(x, mµ) = δ(1-x) + O(α),     fi≠µ(x, mµ) = 0 + O(α)
NLO corrections in Frixione [1909.03886]
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Unlike for protons, since the muon is elementary this can be done from first principles.

The boundary condition is set by    fµ(x, mµ) = δ(1-x) + O(α),     fi≠µ(x, mµ) = 0 + O(α)
NLO corrections in Frixione [1909.03886]

PDFs of a muon

The SM DGLAP equations describe the evolution of the PDFs

A
C

B

Virtual corrections Real emission ultra-collinear 
terms (EWSB)

Chen, Han, Tweedie [1611.00788]

For scales below mW we can use QED+QCD interactions. Above, the complete SM is needed.

M. Ciafaloni, P. Ciafaloni, D. Comelli hep-ph/0111109, hep-ph/0505047]
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Above the EW scale
All SM interactions and fields must be considered and  

several new effects must be taken into account:

• PDFs become polarised, since EW interactions are chiral. 

• At high energies EW Sudakov double logarithms are generated. 

• Neutral bosons interfere with each other: Z/γ and h/ZL PDFs mix. 

• Mass effects of partons with EW masses (W, Z, h, t) become relevant 
and remain so even at multi-TeV scale. 

• EW symmetry is broken. Another set of splitting functions, proportional to v2 instead of pT2, arise: 
ultra-collinear splitting functions.

Bauer, Webber [1808.08831]

Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] 
Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0001142, hep-
ph/0505047], Bauer, Webber [1703.08562, 1808.08831], 
Chen, Han, Tweedie [1611.00788], Han, Ma, Xie 
[2103.09844], F. Garosi, D.M., S. Trifinopoulos [2303.16964]
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LePDF - implementation

The uncertainties due to x and t discretisation are estimated to be of ~1% and ~0.1%, respectively.

All EW & SM interactions are implemented, including all features listed in the previous slide.

We work in the mass eigenstate basis and solve the DGLAP numerically 
in x-space, discretising the [10-6, -1] interval

After identifying PDFs which are identical because of flavour symmetry, we remain with 42 independent PDFs:

Starting from QEW = mW , heavy states are added at the corresponding mass threshold.
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LePDF

LePDF

• Large EW boson PDFs, above EW scale and small x 

• Non negligible gluon and quark content.
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Han, Ma, Xie [2007.14300, 2103.09844]

Summing over polarisations:
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LePDF
Momentum fractions

Fermion number conservation

Momentum conservation u,d:  1.6 × 10-7 

c,s:   1.6 × 10-7 

t,b:    4 × 10-5

Q = 3 TeV

e:    6 × 10-7 

µ:    1.0018 

τ:     6 × 10-7
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Polarisation
Since EW interactions are chiral, PDFs become polarised.

E.g. in case of W- PDF, coupled to µL, the PDF for RH W’s goes to zero for x→ 1  faster than LH W’s, 
since  PV+fL(z) = (1-z)/z  while  PV-fL(z) = 1/z.

Bauer, Webber [1808.08831]

Q = 3 TeV

LePDF

Q = 3 TeV

LePDF

Vectors polarisation:  V+ / V- Fermions polarisation:  ψL / ψR

The muon itself becomes 
polarised!

O(1) polarisation effects! (except for photon PDF)
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Photon - Z mixing PDF
Factorization takes place at amplitude level.

hard hard
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Photon - Z mixing PDF

The splitting function is generalised to a splitting density matrix, 
traced with the density matrix for the hard scattering:

up to O(kT2/E2, m2/E2)

Factorization takes place at amplitude level.

hard hard
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Photon - Z mixing PDF

The splitting function is generalised to a splitting density matrix, 
traced with the density matrix for the hard scattering:

up to O(kT2/E2, m2/E2)

Factorization takes place at amplitude level.

Q = 3 TeV
_____ h+  
- - -  h- 

LePDF

μ
γ

Z

Z/γ

0.01 0.05 0.10 0.50 1
0.001

0.010

0.100

1

10

x
f i(
x,
Q
)

In the collinear limit this can be described by a 
mixed Zγ PDF.   (Similarly also for ZL and H)
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] 
Chen, Han, Tweedie [1611.00788]

(fZγ<0)

hard hard
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Effective Vector Boson Approximation
At energies above the EW scale, collinear emission of EW gauge bosons 
can be described at LO with the Effective Vector Boson Approximation

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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and analogously for the Z and Z/� PDFs
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for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

For Q ≫ mW:

This one is now implemented in MadGraph5_aMC@NLO 
[Ruiz, Costantini, Maltoni, Mattelaer 2111.02442]

Fermi (’24) Weizsacker, Williams (’34) Landau, Lifschitz (’34) 
Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard ’84, 
See also Borel et al. [1202.1904], Costantini et al. 
[2005.10289] Ruiz et al. [2111.02442], etc…

Including W-mass effects:

NOTE: mass effects remain of O(1) also at TeV scale! Chen, Han, Tweedie [1611.00788]

(similar expressions also for ZT, ZL, Z/γ)
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Do we need SM/EW PDFs?
Collinear factorisation works if  pT, mW ≪ Ehard, so it can be viable for a 3 TeV MuC. 
Particularly useful for processes well below threshold Ehard ≪ Ecollider (e.g. production of EW final states). 

The W, Z PDFs are suppressed compared to the photon one by a factor ~ log mW2/mµ2 ~ O(10). 
Nevertheless, they induce the dominant contribution in a large class of processes (vector boson collider).
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Do we need SM/EW PDFs?
Collinear factorisation works if  pT, mW ≪ Ehard, so it can be viable for a 3 TeV MuC. 
Particularly useful for processes well below threshold Ehard ≪ Ecollider (e.g. production of EW final states). 

The W, Z PDFs are suppressed compared to the photon one by a factor ~ log mW2/mµ2 ~ O(10). 
Nevertheless, they induce the dominant contribution in a large class of processes (vector boson collider).

Why not just EVA?

For QCD (gluon and quarks) DGLAP resummation is required since αs is large at small scales.

The expected relative corrections to the LO EVA 
result are proportional to (Sudakov double logs) for Q ~ 1.5 TeV.

still sizeable at lower Q.

For precise vector boson PDFs at the TeV scale it is important to re-sum the EW double logs.
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] 
Bauer, Ferland, Webber [1703.08562]

~ 1

→ PDF approach
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LePDF vs. EVA

LePDF
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LePDF vs. EVA

LePDF The EVA Z/γ PDF is off by ~102, 
due to the fact that in EVA the 
muon is taken unpolarised and

Instead, the muon gains a O(1) 
polarisation, so the actual Z/γ PDF is 
much larger.
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LePDF vs. EVA

LePDF The EVA Z/γ PDF is off by ~102, 
due to the fact that in EVA the 
muon is taken unpolarised and

Instead, the muon gains a O(1) 
polarisation, so the actual Z/γ PDF is 
much larger.

We can also see a sizeable deviation 
(in this log-log plot) for the WT and ZT 
PDF. 
Mostly due to the double-log arising at 
O(α2) from VVV interactions.
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Applications of LePDF …  beyond EVA
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Muon Neutrino PDF
Emission of collinear W- from the muon generates a l 
muon neutrino content inside of the muon.

Muon Neutrino PDF from LePDF

Particularly large at x ≳ 0.3 
due to the IR divergence of the 
µ → W νµ splitting
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Muon Neutrino PDF
Emission of collinear W- from the muon generates a l 
muon neutrino content inside of the muon.

We can compute the νµ PDF at O(α) (as for EVA)

Here Z → ν̅µ νµ dominates O(α2)

Muon Neutrino PDF from LePDF

Particularly large at x ≳ 0.3 
due to the IR divergence of the 
µ → W νµ splitting
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fνμ in Wγ production
Dominant 
contributions 
from VBF

e.g.

But also 
contribution 
from the 
neutrino PDF

e.g.

[work in progress with F. Garsosi, R. Capdevilla, B. Stechauner]
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fνμ in Wγ production
Dominant 
contributions 
from VBF

e.g.

But also 
contribution 
from the 
neutrino PDF

e.g.

[work in progress with F. Garsosi, R. Capdevilla, B. Stechauner]

@ 10 TeV Muon Collider

Differential cross 
section in: 
yγ, yW, pTγ

pTγ = 1TeV pTγ = 2TeV
x1,2 > 1

x1,2 > 1

We plot:

[%]

Differential xsec [ab/GeV]

PRELIMINARY PRELIMINARY
PRELIMINARY

Thanks to F. Garosi for the plots!
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fνμ in Wγ production
Dominant 
contributions 
from VBF

e.g.

But also 
contribution 
from the 
neutrino PDF

e.g.

The muon neutrino PDF can contribute from few % up to ~ 40%.

[work in progress with F. Garsosi, R. Capdevilla, B. Stechauner]

@ 10 TeV Muon Collider

Differential cross 
section in: 
yγ, yW, pTγ

pTγ = 1TeV pTγ = 2TeV
x1,2 > 1

x1,2 > 1

We plot:

[%]

Differential xsec [ab/GeV]

PRELIMINARY PRELIMINARY
PRELIMINARY

Thanks to F. Garosi for the plots!
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Compton Scattering @ MuC

What is the impact of the mixed Zγ PDF?

[work in progress with A. Stanzione]
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Compton Scattering @ MuC

What is the impact of the mixed Zγ PDF?

[work in progress with A. Stanzione]

RZγ [%]

RZγ [%]

pT = 500 GeV

pT = 1000 GeV

@ 10 TeV Muon Collider

PRELIMINARY
Thanks to A. Stanzione for the plots!

diff xsec [fb/GeV]

diff xsec [fb/GeV]
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Compton Scattering @ MuC

What is the impact of the mixed Zγ PDF?

The mixed Zγ PDF can contribute from few % up to ~ 40%, 
depending on the phase space region.

[work in progress with A. Stanzione]

RZγ [%]

RZγ [%]

pT = 500 GeV

pT = 1000 GeV

@ 10 TeV Muon Collider

PRELIMINARY
Thanks to A. Stanzione for the plots!

diff xsec [fb/GeV]

diff xsec [fb/GeV]
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Singlet (pseudo-)scalar production

This singlet scalar can be produced at muon colliders by (transverse) vector boson fusion. 
What is the impact of the mixed Zγ PDF?

[work in progress with A. Stanzione]
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Singlet (pseudo-)scalar production

This singlet scalar can be produced at muon colliders by (transverse) vector boson fusion. 
What is the impact of the mixed Zγ PDF?

[work in progress with A. Stanzione]

@ 10 TeV MuC

Λ = 1TeV
2000 4000 6000 8000 10000

10-6

10-5

10-4

0.001

0.010

Mϕ [GeV]

σ
10
Te
V
[fb

]

CB=1 CW=0

CB=0 CW=1

CB=1 CW=1

10 events with 10ab-1

@ 10 TeV MuC

~ 10% - 40% effect! PRELIMINARY

Thanks to A. Stanzione for the plots!

PRELIMINARY
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We derived resummed SM PDFs for lepton colliders at the leading-log level: LePDF. 
 
The results are made public in a LHAPDF6-type format: extended to include helicity dependence. 

https://github.com/DavidMarzocca/LePDF 

We show that the implementation of EVA with the Q≫mW approximation is not sufficient, even at TeV scales. 
When mass terms are included, EVA @ LO deviates by: 

- up to O(30-40%) for ZT and WT at small x and large Q (few TeV) , 
- ~102 for the Z/γ PDF. 

The muon neutrino PDF inside a muon can impact physics studies: from few % up to ~40% effect! 

The mixed Zγ PDF can impact the xsec for several final states (SM or BSM) by up to ~40%. 

We hope this tool can allow more comprehensive studies of physics potential at Muon Colliders!

Thank you!

https://github.com/DavidMarzocca/LePDF


Backup
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Uncertainty due to choice of QQCD
QQCD =  [0.5 - 1] GeVChanging the scale in the interval

Relative variation in the PDFs, evaluated at the mW scale.

For leptons and the photon, relative variations are smaller than 10-5.

gluon

LePDF

quarks

LePDF
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EW Sudakov double logs from ISR

The EW Sudakov double logs arises as a non-cancellation of the IR soft divergences (z → 1) 
between real emission and virtual corrections.

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories 
→ IR divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet 
→ We are often interested in exclusive processes, since we measure the SU(2) charge (W vs Z, t vs b, etc…)

Here I am interested in resumming the EW double logs 
related to the initial-state radiation. 
At the leading-log level we can neglect soft radiation
Manohar, Waalewĳn [1802.08687]

[1802.08687]

P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315] 
see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918 ], Pagani, Zaro [2110.03714], … 
Manohar, Waalewĳn [1802.08687], Chen, Glioti, Rattazzi, Ricci, Wulzer [2202.10509]

In case of collinear W emission they can be implemented (and resummed) 
at the Leading Log level by putting an explicit IR cutoff zmax = 1 - QEW / Q
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109]; Bauer, Ferland, Webber [1703.08562]; Manohar, Waalewĳn [1802.08687]
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EW Sudakov double logs from ISR
In case of collinear W emission they can be implemented 
(and resummed) at he  Double Log level equations by putting an 
explicit IR cutoff zmax = 1 - QEW / Q

This modifies also the virtual corrections as:

M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] 
Bauer, Ferland, Webber [1703.08562] 
see Manohar, Waalewĳn [1802.08687] for a different approach

The non-cancellation of the zmax dependence between emission and 
virtual corrections generates the double logs.

This happens if otherwise we set zmax=1  and use the +-distribution.

(QEW = mW)
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MuC 10 TeV luminosities

LePDF

γγ

WT
-WT

+

WL
-WL

+

ZTZT

gg uu

μμ

μLνμ
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0.100
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MuC 3 TeV luminosities

LePDF

γγ
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+
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gg uu

μμ
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200 500 1000 200010-7
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0.001
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s [GeV]

ℒ
ij(
s )

Some examples of parton luminosities for muon colliders.

- The very large γγ lumi could dominate over Z and Z/γ contributions. 
- gluon and quark luminosities are small: suppressed impact of QCD-induced backgrounds.

Some comments:

PDFs of a muon

LePDF LePDF
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LePDF vs. EVA
The deviation becomes larger at small x and at large scales 
(Sudakov double logs are absent in EVA).

We improve EVA by computing iteratively the W-+ PDF at O(α2). *

Several double logs appear at this order, 
we find a much improved agreement with the LePDF resummation.

* for simplicity, in the NLO 
part we take the Q ≫ mW 
and x ≪ 1 limit 
in the LO EVA expression.
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LePDF vs. EVA: WW Luminosity

EVALO

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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and analogously for the Z and Z/� PDFs
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In Fig. 3 we show the dependence in
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Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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Implemented in MadGraph5_aMC@NLO 
Ruiz, Costantini, Maltoni, Mattelaer [2111.02442]EVALOmV→0

At the level of parton luminosity: 

- for WTWT: EVALO is accurate to ~15% 
- for WLWL: EVALO is accurate to ~5% 
- The Q≫mV approximation does not 

reproduce well the complete result, with 
O(1) differences up to large scales 
(particularly for transverse modes).
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Top quark PDF
For hard scattering energies E ≫ mt, terms with log E/mt due to collinear emission of top quarks can arise. 
These can be resummed by including the top quark PDF within the DGLAP evolution, in a 6FS.
Barnett, Haber, Soper ’88; Olness, Tung ‘88

Dawson, Ismail, Low [1405.6211] 
Han, Sayre, Westhoff [1411.2588] Whether or not this is useful depends on the process under consideration.

We provide two version of the codes: 5FS and 6FS. 
In the 6FS we keep finite top quark mass effects, 
 like we do for other heavy SM states.
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with masses
p̃T2 = pT2

Mass effect
A

C

BThe mass modifies the propagator of the off-shell parton which 
then enters the hard scattering:

Chen, Han, Tweedie [1611.00788]

The effect of finite EW masses is sizeable 
even at TeV scales.

The kinematical effect of the mass of particle C is 
instead negligible in the collinear limit 

 EC = (z-x) E > mC

For E ≫ pT, m, we can neglect this effect.
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Ultracollinear splittings
In the unbroken phase, splitting matrix elements are proportional to pT2

Upon EWSB, further splittings proportional to v2 are generated. 
They generalise the EWA splitting f → WL f'

Ultra-collinear splitting function Chen, Han, Tweedie [1611.00788]

A
C

B

The DGLAP equations are generalised as:

The missing pT2 factor removes the log enhancement at high scales, 
making the u.c. terms approach a constant value.

For example:
coupling of massless fermions to WL, 
with no chirality flip 
(via coupling to remainder gauge field Wn in GEG)
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LePDF: Numerical Implementation
We solve the DGLAP numerically in x space. Due to the sharp behaviour of the muon PDF near x=1, the 
typical interpolation techniques used for PDFs of proton do not work.

We discretise x interval [xmin=10-6,1] in Nx small intervals, denser for x ≈ 1:

For the splitting functions divergent in z → 1 we us the “+” distribution

The differential evolution is done in t = log Q2/mµ2 with 4th order Runge-Kutta.

At x=1 we fix
where L(t) is fixed imposing momentum conservation:

Han, Ma, Xie [2103.09844]

The uncertainties due to x and t discretisation are estimated to be of ~1% and ~0.1%, respectively, for Nx=1000.


