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OUTLOOK

At c.m. energies Q ≫ M, M being the weak scale, energy growing
Electroweak Radiative corrections can be taken into account by
defining PDFs that obey Electroweak Evolution Equations (EWEE),
in analogy with DGLAP in QCD

In order to be compatible with isospin conservation, we propose to
modify EWEEs with respect to what have been done until now in the
literature

These modifications have a sizeable impact on the Parton
Distribution Functions (PDFs)
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EW corrections @ Q ≫ M have a ∼ 15 y long history

Relevant also for LHC

Leading terms related to Infrared divergences

collinear θ → 0 infrared E → 0, cut off by finite value of M

one loop: ∝ αw log2 Q
M ∼ 30% Q ∼ TeV

Need to deal with higher orders (fixed order, resummation)
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Inclusive quantities

+

2 2

QED, QCD: cancellation of IR divergences

EW: NON cancellation of (would be) IR divergences ∝ log2 Q
M

“Bloch-Nordsiek” violation

related to symmetry breaking: nonabelian charges in the initial state

Large, energy-growing, double logs are ubiquitous
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Resummation - Keeping perturbative expansion under
control

RGE: α(Q) = α(M) + α(M) log Q
M + · · · = 1

1−α(M)L , L = log Q
M

O(αnLn) are resummed, NOT α2L, α, ·.
EWEE: 1 + αL2 + ... = e−αL2

Leading: αnL2n Subleading αnLk , 0 ≤ k ≤ n − 1

How do we calculate PDFs fij?
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Electroweak Evolution Equations EWEE (DGLAP in QCD)
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Perturbative initial conditions: fij(x , ε = 1) = δijδ(1− x)

EW only, i = νL, e
−
L +antif. , W+

T ,W−
T ,W 0

T , g
′ = 0 (NOT the full

SM)
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EWEE in isospin basis - qualitative analysis

Convenient to work in the isospin basis ⇒ three separated sets of
coupled equations: I = 0, 1, 2.

I = 0 “QCD like”

f0 =
fν + fe

2

EWEEs resum O(αL)n purely collinear

I = 1 “Genuinely EW”
f1 = fν − fe

EWEEs resum O(αL2)n collinear/IR “EW Bloch-Nordsieck violation”
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SUM RULES - I

Probabilistic interpretation Prob(i → j) =
∫ 1
0 dxfji (x)

Quantum number conservation qi =
∑

j qjProb(i → j)

EWEE in Mellin transform

f̃ (N, ε) =
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0
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α

∂
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f̃ij(N, ε) = f̃ik(N, ε) P̃G
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N=1:charge, fermion number N=2: momentum
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SUM RULES - Fermion Number

1 =

∫ 1

0
dz [feν(z , ε) + fνν(z , ε)− fν̄ν(z , ε)− fēν(z , ε)] =

∫ 1

0
dz fL−

0
L−
0
(z , ε)

=⇒

I=0, “QCD like” is related to fermion number

Use EWEEs:

0 = −π

α

∂
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0
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P̃R
ff (1, ε) + P̃V

ff (1, ε) =

∫ 1

0
dz(PR

ff (z , ε) +PV
ff (z , ε)) = 2ε+O(ε2) → 0

P. Ciafaloni, D. Comelli, JHEP 11 (2005), 022; C. W. Bauer, N.
Ferland and B. R. Webber, JHEP 08 (2017), 036; F. Garosi, D.
Marzocca and S. Trifinopolous, JHEP 09 (2023) 107. . .
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SUM RULES - Isospin
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it corresponds to I = 1 which only exists for EW!
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Splitting functions
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Impact on PDFs

ϵ = M
Q = 10−2,numerical 10−2 < x < 1 ∼ 20 % @ x=0.3
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Conclusions

Electroweak interactions are characterized by I = 1 evolution
equations that are absent in the corresponding I = 0 QCD (DGLAP)
and QED equations.

Isospin conservation, related to the I = 1 equations, requires to
modify the splitting functions by adding suitable cutoffs.

The solution (PDFs) obtained with these new kernels differ
significantly from the ones using the standard kernels used in the
literature until now.

The modifications described here will be particularly relevant if a 100
TeV Future Circular Collider and/or a TeV scale muon collider will see
the light.
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