

EFT Studies of high-p_T SM processes

JeongEun Lee Seoul National University (SNU)

 On behalf of the ATLAS and CMS collaborations March 7th 2024

La Thuile 2024, 3-9 March XXXVII Les Rencontres de Physique de la Vallée d'Aoste

Exploring Beyond the Standard Model

No clear evidence of Beyond the Standard Model (BSM) particles at the LHC

 \Rightarrow A rise in the indirect search strategy

Why the Effective Field Theory?

- No clear evidence of BSM particles at the LHC \Rightarrow A rise in the indirect search strategy
- Standard Model Effective Field Theory (SMEFT) :
	- Low-energy limit of generic UV-complete models
	- Complete basis for interaction, and systematic parametrization of BSM effect
- New insights into the existing spectrum through reinterpretation, or directly measures coefficients using the primary likelihood method.
- EFT operators may induce growth with the center-of-mass-energy.
	- \Rightarrow Better sensitivity in high energy at LHC. Exploit differential cross-sections in the TeV region

$$
L_{\text{EFT}} = L_{\text{SM}} + \sum_{i} \frac{\bar{C}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{\bar{C}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots
$$

- **Ci** free parameters (**Wilson coefficients**) \rightarrow encode all UV information
- **O**_i invariant **operators** that form a complete, non-redundant basis
	- \rightarrow describe the IR information

New physics in interactions

ATLAS

- **Global combined** EFT Interpretations [ATL-PHYS-PUB-2022-037](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-037/)
- aTGC in **WW + ≥ 1 j** [JHEP06\(2021\)003](https://link.springer.com/article/10.1007/JHEP06(2021)003)
- aQGC in **VBS ZZ+jj** [JHEP01\(2024\)004](https://link.springer.com/article/10.1007/JHEP01(2024)004)
- aQGC in **VBS WW+jj** [ATLAS-CONF-2023-023](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-023/)
- **ZZ** production at 13.6 TeV [ATLAS-CONF-2023-062](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-062/) **Run3**

CMS

- aTGC in Electroweak **Wγ** [Phys.Rev.D.105\(2022\)052003](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.052003)
- aTGC in Electroweak **WZ** [JHEP07\(2022\)032](https://link.springer.com/article/10.1007/JHEP07(2022)032)
- aQGC in **VBS Wγ+jj** [Phys.Rev.D.108\(2023\)032017](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.108.032017)
- EW Oblique parameter in **W** [JHEP 07 \(2022\) 067](https://link.springer.com/article/10.1007/JHEP07(2022)067)

4-fermion contact interaction

WWZ, WWγ (allowed SM at tree-level) neutral TGC; ZZZ, ZZγ, Zγγ (forbidden)

WWWW, WWZZ, WWZγ, WWγγ (SM) neutral QGCs; ZZZZ, Ζγ, ΖΖγγ, Ζγγγ (forbidden)

Recently ATLAS reported

aQGC in **VBS Wγ+jj** [arxiv:2403.02809](https://arxiv.org/abs/2403.02809) (Given in [Júlia's talk](https://agenda.infn.it/event/38205/timetable/?view=standard#29-ew-and-qcd-measurements-atl))

ATLAS Global EFT Interpretations

Higgs [combination](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-053/) + EW (WW, WZ, 4l, Z+2jets) [comb](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-022/). + EWPO at LEP and SLC

• Combining multiple operators across multiple channels can help to improve constraints and reduce blind directions

- Constraining 6 individual and 22 linear combinations of Wilson coefficients (linear).
- Several constraints driven by both ATLAS and LEP/SLD.
- Linear fits agree with the SM expectation for most fitted parameters, except for $c^{[4]}$ $_{HVV,Vff}$ (excess driven by a well known discrepancy in $A^{0,b}_{FB}$ from the SM expectation.)

Electroweak WW + ≥ 1 jet

- Fiducial integrated and differential cross sections in good agreement with SM with 10% uncertainty.
- Dim-6 C_w coefficient constrained also in high-p_T(leading jet) phase space using unfolded **m eμ** cross-section
- \bullet High-p_T (leading jet) SR enhances the sensitivity to SM and EFT interference effect (backup)

dim-6 aTGC in WW + ≥ 1 jet

- Compare to see whether the pure BSM terms in EFT expansion are relevant in the different phase space.
- \bullet High- p_{T} jet SR enhances the sensitivity to effects p_{τ}^{jet} > 200 GeV proportional to $\text{c}_{\mathsf{w}}/\mathsf{\Lambda}^{2}$ due to the reduced suppression of the interference between the SM and the BSM.

Limit for High- p_{T} jet improved relative to a p_{T} > 30 GeV

JeongEun Lee (SNU) EFT Studies of high-pT SM processes March 7 2024 8

 Ω

 c_w/Λ^2 [TeV⁻²]

VBS ZZ + 2jets

- Studying the rare VBS $ZZ + 2$ jets
- Differential cross-section measurement of 4 charged leptons + 2 jets production
- Key observables:
	- VBS sensitive

 \Rightarrow **m**_{4l'} p_T(4l), **m**_{jj}, Δ y_{jj}, p_T(jj)

- Polarization and CP structure of WWZ and WWZZ self-interactions ⇒ $\cos\theta^*_{12}$, $\cos\theta^*_{34}$, m_{jj}, $\Delta\varphi_{jj}$, p_{τ} (jj)
- Sensitive to extra QCD radiation \Rightarrow p_T(4ljj), S_T(4ljj)
- The measurements are used to test EFT dim-8 and dim-6 operators $O_{\tau i}$ aQGC

dim-8 aQGC in VBS ZZ+2jets

● Constraints on the dim-8 aQGC **including/excluding the pure dim-8 contributions** to the EFT prediction Wilson $|M_{\rm d8}|^2$ 95% confidence interval $[TeV^{-4}]$ coefficient Included Expected Observed $|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2 \operatorname{Re}(\mathcal{M}_{\rm SM}^* \mathcal{M}_{\rm d8}) + |\mathcal{M}_{\rm d8}|^2$ $f_{\rm T,0}/\Lambda^4$ $[-1.00, 0.97]$ $[-0.98, 0.93]$ **ves** $[-19, 19]$ $[-23, 17]$ no $f_{\rm T,1}/\Lambda^4$ $[-1.3, 1.3]$ $[-1.2, 1.2]$ 95% CI for dim-8 operators as a function of cut-off ves $[-140, 140]$ $[-160, 120]$ no scale $(m_{4} < E_{\text{cutoff}})$ using 2D $(m_{ii}, m_{4}$) fit. most tightly constrained $f_{\rm T,2}/\Lambda^4$ $[-2.6, 2.5]$ $[-2.5, 2.4]$ yes constrained $[-74, 56]$ $[-63, 62]$ no $f_{\rm T,5}/\Lambda^4$ $[-2.6, 2.5]$ $[-2.5, 2.4]$ ves $[-68, 67]$ $[-79, 60]$ no **ATLAS**
 $\sqrt{s} = 13 \text{ TeV}$, 140 fb⁻¹ **ATLAS** $f_{\rm T.6}/\Lambda^4$ -30 \sqrt{s} = 13 TeV, 140 fb⁻¹ $[-4.1, 4.1]$ $[-3.9, 3.9]$ **ves** $[-550, 540]$ $[-640, 480]$ **excluded** no $f_{\rm T.7}/\Lambda^4$ $[-8.8, 8.4]$ $[-8.5, 8.1]$ **ves** $10E$ $[-220, 220]$ $[-260, 200]$ no 야 $f_{\rm T,8}/\Lambda^4$ $[-2.1, 2.1]$ $[-2.2, 2.2]$ ves -10 -10 $[-3.9, 3.8] \times 10^4$ $[-4.6, 3.1] \times 10^4$ no $f_{\rm T.9}/\Lambda^4$ $[-4.7, 4.7]$ -20 ² ves $[-4.5, 4.5]$ Expected 95% confidence interval Expected 95% confidence interval $[-6.4, 6.3] \times 10^4$ Observed 95% confidence interva $[-7.5, 5.5] \times 10^4$ $-30E$ no Observed 95% confidence interval- -30 **Unitarity Bound Unitarity Bound** $c_i = c_i^{(8)} = f_i^{(8)}/\Lambda^4$ 2.5 1.5 $\overline{2}$ 2.5 1.5 \overline{c} $E_c[TeV]$ E_c [TeV] (dim-6 limits are in backup)

VBS WW +2jets

- Studying the rare VBS same-sign WW $+ 2$ forward jets
- Fiducial and differential cross-sections for inclusive and EW-enhanced phase space
- The m_{u} is sensitive to constraint dim-8 wilson coefficients, and the binning is optimized. \Rightarrow The boundaries of the last m_u bin are optimised to have best expected limits

dim-8 aQGC in VBS WW+2jets

All other 1D, 2D limits are in backup

JeongEun Lee (SNU) EFT Studies of high-pT SM processes March 7 2024 12

 $\overline{8}$

 f_{T0}/Λ^4 [1/TeV⁴]

 ∞

ZZ production at 13.6 TeV

- First measurements of integrated and differential fiducial cross-section using 13.6 TeV 2022 data (lumi = 29 fb⁻¹)
- - \circ m_{4l}, p_T(4l)
- An excellent agreement of state-of-art-theory prediction with the data.

• 2 input observables sensitive to aTGCs: $ZZ \rightarrow 4$ l, $ZZ \rightarrow 2$ l2v, H $\rightarrow ZZ$ and EWK production

Electroweak Wγ

- 1 photon and 1 e/ μ coming from W
- **● First differential cross section measurements at 13 TeV**
- Target dim-6 C_{3W} coefficient for aTGC
- **•** EFT effects in decay angle ϕ_f in the WY center-of-mass frame to enhance sensitivity to SM-EFT interference **"Interference resurrection"**
- Important to capture the different final-state helicity configurations for the SM and BSM W_TV_T components
- Fit with 2D ϕ_f $p_T(V)$

JeongEun Lee (SNU) EFT Studies of high-pT SM processes March 7 2024 14

 p_{τ}^{γ} (GeV)

200

dim-6 aTGC in Electroweak Wγ

- WY is a new kind of diboson EFT analysis using angular info in addition to high energy enhancement.
- 2 sigma limits as a function of p_τ(γ) cutoff
- Information from ϕ_f dramatically improves sensitivity to interference
- Pure BSM term d overall results

Electroweak WZ

- Three leptons (e or μ) with at least one OSSF pair coming from Z : Clean final state, high purity
- Measurement of the differential cross section for various observables
- Target dim-6 aTGC coefficients
- \bullet High tails of m_{WZ} and $p_{T}(Z)$ sensitive to presence of EFT effects
	- : Compute the EFT effect in the m_{WZ}

dim-6 Charged aTGC in Electroweak WZ

CP-conserving terms

- The effect of **CP-violating** dim-6 operators is introduced for the **first time in WZ**, leading to CIs similar to those obtained in the CP-conserving case
- Provides stronger constraints than previous analyses by a factor of 2 [\(JHEP04\(2019\)122](http://dx.doi.org/10.1007/JHEP04(2019)122))
- Possible correlations across the CP-conserving EFT parameters are studied by producing 2D limit (backup)

SM + Interference + pure BSM

VBS Wγ+2jets

CMS [Phys.Rev.D.108\(2023\)032017](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.108.032017)

- Well-displaced 2 jets, 1 photon, and 1 lepton coming from W boson
- Measure inclusive and differential cross-sections in a VBS phase space
- Target dim-8 aQGC coefficient in EW VBS process
- Separate SRs for barrel γ and endcap γ 2 approaches :
- SM fit performed using and m_{ij} and m_{lj}
- EFT aQGCs would enhance yield at high-m_{wγ} region

- 95% Confidence Intervals on each aQGC coefficient (SM + Interference + pure BSM)
- **The most stringent limits to date** on :

M2−⁵ / Λ 4 and **T6−⁷ / Λ 4**

Provided U_{bound} [TeV] on scattering energy : Beyond this bound, a scattering amplitude violate unitarity. (EFT expansion is not valid)

(TeV)

ATLAS also report **Wγ+2jets very recently!**

[arxiv:2403.02809](https://arxiv.org/abs/2403.02809) (Given in [Júlia's talk\)](https://agenda.infn.it/event/38205/timetable/?view=standard#29-ew-and-qcd-measurements-atl)

EW Oblique parameter in high lν

- New resonances, when too heavy to be produced on-shell, contribute to 4-fermion contact interactions (or modify W/Z propagators when universal)
- Deviations entirely parametrized by 4 parameters : $\left|\hat{S}, \hat{T}, W, Y\right|$
- *W, Y* grows with **q² (√s) :** contribute to offshell DY

deviation weight

(BSM/SM)

$$
\left|\frac{P_W}{P_W^{(0)}}\right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2}\right)^2
$$

t = tangent of the SM weak mixing angle (\approx 0.3)

q = invariant mass of the l+ν system at the hard scattering level

 m_{W} = W boson mass

W. Y = oblique parameters

Conclusions

- Big efforts to scan all possible sources of indirect new physics effects with the EFT approach at the LHC
- Differential measurements of vector boson interactions provide unprecedented sensitivity to both anomalous Triple/Quartic Gauge Coupling (aTGC/aQGCs).
- Still No deviation from the SM was found.
- Global combination including Higgs, EWK and LEP/SLC EWPO are available.
- Further developments with more data, robust framework, advanced analysis techniques.
- **● Stay tune for upcoming results.**

More results in

[ATLAS publications](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications), [CMS publications](http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html)

Collisions That Changed The World

dim6 EFT operators

Warsaw basis

Gauge boson self-interactions highlighted

dim8 EFT operators for QGCs

Higgs field (ℒ**^S scalar type)**

 $\mathcal{L}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$ $\mathcal{L}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$

Higgs - Gauge boson field (ℒ**^M mixed -scalar tensor type)**

> $\mathcal{L}_{M,0}\ =\ \text{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right]\times\left[(D_\beta\Phi)^\dagger\,D^\beta\Phi\right]$ $\mathcal{L}_{M,1} \ = \ \mathrm{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[\left(D_\beta \Phi \right)^\dagger D^\mu \Phi \right]$ $\mathcal{L}_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi]$ $\mathcal{L}_{M,3} \ = \ \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,4}\,=\,\left[\left(D_\mu\Phi\right)^\dagger\hat{W}_{\beta\nu}D^\mu\Phi\right]\times B^{\beta\nu}$ $\mathcal{L}_{M,5} = \left[(D_\mu \Phi)^\dagger \hat{W}_{\beta\nu} D^\nu \Phi \right] \times B^{\beta\mu}$ $\mathcal{L}_{M,6} = \left[(D_\mu \Phi)^\dagger \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^\mu \Phi \right]$ $\mathcal{L}_{M,7} = \left[(D_\mu \Phi)^\dagger \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^\nu \Phi \right]$

O. J. P. Éboli et al. [PhysRevD.74.073005](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.74.073005) **Gauge boson field**

(ℒ**^T tensor type)**

$$
\mathcal{L}_{T,0} = \text{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \text{Tr}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]
$$
\n
$$
\mathcal{L}_{T,1} = \text{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \times \text{Tr}\left[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}\right]
$$
\n
$$
\mathcal{L}_{T,2} = \text{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \times \text{Tr}\left[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}\right]
$$
\n
$$
\mathcal{L}_{T,3} = \text{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\hat{W}^{\nu\alpha}\right] \times B_{\beta\nu}
$$
\n
$$
\mathcal{L}_{T,4} = \text{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\alpha\mu}\hat{W}^{\beta\nu}\right] \times B_{\beta\nu}
$$
\n
$$
\mathcal{L}_{T,5} = \text{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times B_{\alpha\beta}B^{\alpha\beta}
$$
\n
$$
\mathcal{L}_{T,6} = \text{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \times B_{\mu\beta}B^{\alpha\nu}
$$
\n
$$
\mathcal{L}_{T,7} = \text{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \times B_{\beta\nu}B^{\alpha\nu}
$$
\n
$$
\mathcal{L}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta}
$$
\n
$$
\mathcal{L}_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}
$$

Set of dim-8 operators affecting quartic boson vertices:

ATLAS Global combination of EFT result

 $c_{tq}^{(8)}$

 $(\bar{q}T^a \gamma_\mu q)(\bar{t}T^a \gamma^\mu t)$

Contract

Electroweak WW + ≥ 1 jet

Interference Resurrection (VBS ZZ+2jets)

[arxiv:1708.07823](https://arxiv.org/pdf/1708.07823.pdf) Diboson interference resurrection

- The interference cannot be experimentally detected with "inclusive" observables
- Different helicity configurations for SM and BSM components ⇒ Leads to suppression of interference
- Try exclusive measurement! (ex) Differential angle acquires sensitivity to interf
- CP -odd dim-6 operators (blue box*), constra obtained using $\Delta \phi_{ij}$ distribution
	- ⇒ large asymmetric effects for SM-EFT interference.

ATLAS

 $10 \le \sqrt{s} = 13$ TeV, 140 fb

 $rac{d}{d}$ $\frac{\sigma}{\phi}$ [fb/rac

 10^{-3}

Ratio to Data

dim8 aTGC in VBS WWjj

Charged aTGC in Electroweak WZ

compute the EFT effect in the high tails of M(WZ)

2D Limit on CP conserving aTGC in WZ

CMS 137 fb⁻¹ (13 TeV) Deserved, 95% CL $\frac{C_{\rm W}}{\Lambda^2}\left[\frac{1}{\rm TeV^2}\right]$ Expected, 68% CL
Expected, 95% CL
Expected, 99% CL **30**
 30
 30
 30
 30
 30
 3024
 3024
 30
 30
 30
 30
 30
 30
 30
 3024
 30324
 3 ۰. Possible correlations across the CP-conserving EFT terms are studied by producing 2D CIs $\frac{c_{www}}{\Lambda^2} \left[\frac{1}{\text{TeV}^2} \right]$ -1.5 -1 -0.5 0.5 **CMS** 137 fb⁻¹ (13 TeV) **CMS** $\frac{G_W}{\Lambda^2}\left[\frac{1}{\text{TeV}^2}\right]$ Observed, 95% CL
Best Fit Expected, 68% CL
Expected, 95% CL
Expected, 99% CL $\frac{c_b}{\Lambda^2} \left[\frac{1}{\text{TeV}^2} \right]$ Expected, 68% CL ۰ Expected, 95% CL
Expected, 99% CL ۰

EFT - Composite Higgs Interpretation

Effective Field Theory Approach

EFT approach quantifies potential deviations from the SM expectations through the *W* parameter

$$
\left|\frac{P_W}{P_W^{(0)}}\right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2}\right)^2
$$

Modified SM predictions by **reweighting method.** Compared with data and set the W-parameter

Composite Higgs boson models

Input for this reinterpretation comes in 3 complementary ways

- 1. **direct W' search** : W' boson to be a composite resonance. The gauge coupling to the new constituents is g*
- 2. **indirect EFT approach** : *W* parameter is used to quantify deviations from the SM.
- 3. **[Higgs](https://link.springer.com/article/10.1140/epjc/s10052-019-6909-y)** : NP modify SM prediction of H prod/decay modification can be scaled.

