

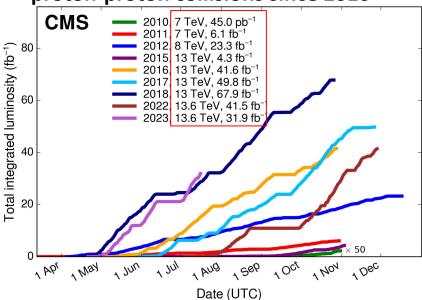
EFT Studies of high-p_T SM processes

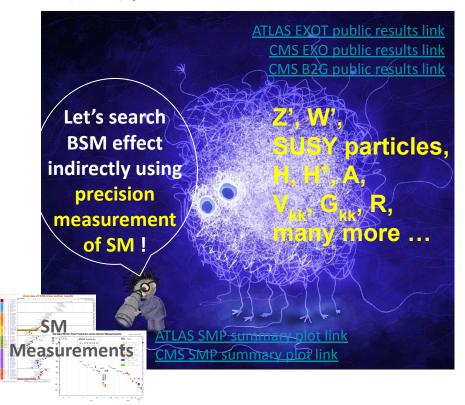
JeongEun Lee
Seoul National University (SNU)

On behalf of the ATLAS and CMS collaborations

March 7th 2024

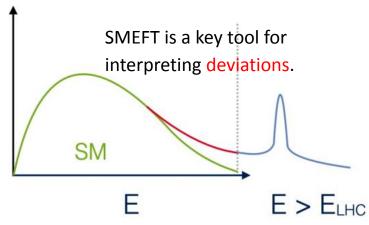
La Thuile 2024, 3-9 March
XXXVII Les Rencontres de Physique de la Vallée d'Aoste




Exploring Beyond the Standard Model

- No clear evidence of Beyond the Standard Model (BSM) particles at the LHC
 - ⇒ A rise in the indirect search strategy

Large Hadron Collider proton-proton collisions since 2010

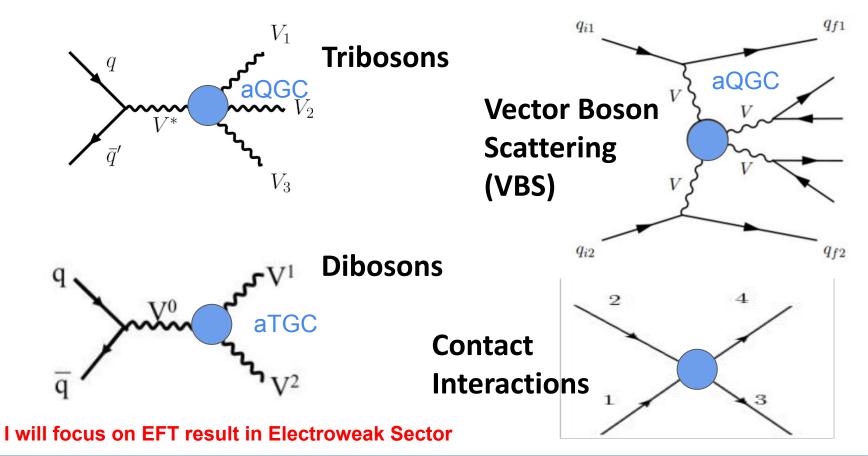


Why the Effective Field Theory?

- No clear evidence of BSM particles at the LHC
 - ⇒ A rise in the indirect search strategy
- Standard Model Effective Field Theory (SMEFT) :
 - Low-energy limit of generic UV-complete models
 - Complete basis for interaction, and systematic parametrization of BSM effect
- New insights into the existing spectrum through reinterpretation, or directly measures coefficients using the primary likelihood method.
- EFT operators may induce growth with the center-of-mass-energy.
 - ⇒ Better sensitivity in high energy at LHC.

Exploit differential cross-sections in the TeV region

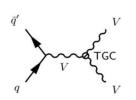
$$L_{\text{EFT}} = L_{\text{SM}} + \sum_{i} \frac{\bar{C}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{\bar{C}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$$


 $\mathbf{C}_{\mathbf{i}}$ free parameters (Wilson coefficients)

- → encode all UV information
- **O**_i invariant **operators** that form a complete, non-redundant basis
 - → describe the IR information

New physics in interactions

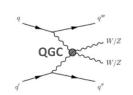
Recents EFT results in Electroweak sector AT


ATLAS

- Global combined EFT Interpretations
 ATL-PHYS-PUB-2022-037
- aTGC in WW + ≥ 1 j
 JHEP06(2021)003
- aQGC in VBS ZZ+jj JHEP01(2024)004
- aQGC in **VBS WW+jj**ATLAS-CONF-2023-023
- ZZ production at 13.6 TeV Runs ATLAS-CONF-2023-062

CMS

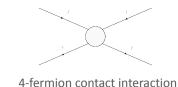
aTGC in Electroweak **W**γ


Phys.Rev.D.105(2022)052003

• aTGC in Electroweak **WZ**

JHEP07(2022)032

aQGC in VBS Wγ+jj
 Phys.Rev.D.108(2023)032017



EW Oblique parameter in W

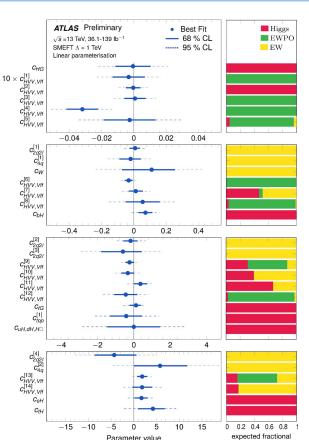
JHEP 07 (2022) 067

WWWW, WWZZ, WWZY, WWYY (SM) neutral QGCs; ZZZZ, ZZZY, ZZYY, ZYYY (forbidden)

WWZ, WWy (allowed SM at tree-level) neutral TGC; ZZZ, ZZY, ZYY (forbidden)

Recently ATLAS reported aQGC in VBS Wy+jj arxiv:2403.02809 (Given in Júlia's talk)

ATLAS Global EFT Interpretations


ATL-PHYS-PUB-2022-037

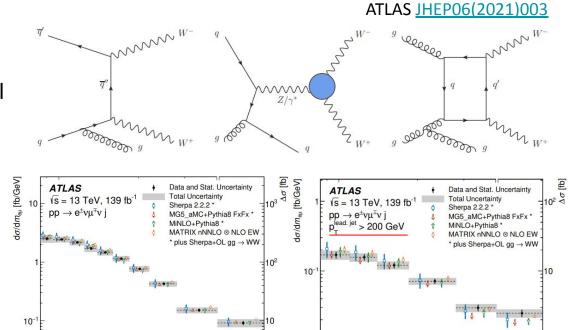
Higgs <u>combination</u> + EW (WW, WZ, 4I, Z+2jets) <u>comb</u>. + EWPO at LEP and SLC

Decay channel	Target Production Modes	$\mathcal{L} \; [\mathrm{fb}^{-1}]$	Ref.
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139	[10]
$H o ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	[11]
$H \rightarrow WW^*$	ggF, VBF	139	[12]
H o au au	ggF, VBF, WH , ZH , $t\bar{t}H(\tau_{\rm had}\tau_{\rm had})$	139	[13]
	WH, ZH	139	[14,15,16]
H o bar b	VBF	126	[17]
	$tar{t}H$	139	[18]

Process	Important phase space requirements	Observable	\mathcal{L} [fb ⁻¹]	Ref.
$pp \rightarrow e^{\pm} \nu \mu^{\mp} \nu$	$m_{\ell\ell} > 55 GeV, p_{\rm T}^{\rm jet} < 35 GeV$	$p_{\mathrm{T}}^{\mathrm{lead.\ lep.}}$ m_{T}^{WZ}	36	[19]
$pp \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\ell\ell} \in (81, 101) GeV$	m_{T}^{WZ}	36	[20]
$pp \rightarrow \ell^{+}\ell^{-}\ell^{+}\ell^{-}$	$m_{4\ell} > 180 GeV$	m_{Z2}	139	[21]
$pp \rightarrow \ell^+ \ell^- jj$	$m_{jj} > 1000GeV, m_{\ell\ell} \in (81,101)GeV$	$\Delta \phi_{jj}$	139	[22]
$pp \rightarrow \epsilon \epsilon jj$	$m_{jj} > 1000 \mathrm{GeV} , m_{\ell\ell} \in (81, 101) \mathrm{GeV}$	$\Delta \psi_{jj}$	100	_

Observable	Measurement	Prediction	Ratio
Γ _Z [MeV]	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010
R_{ℓ}^{0} R_{c}^{0} R_{L}^{0}	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013
R_c^b	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017
R_h^0	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031
$A_{\rm ER}^{0,\ell}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062
$A_{\rm EB}^{0,c}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048
$A_{\text{EB}}^{0,b}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021
$\sigma_{\rm bol}^{0}$ [pb]	41488 ± 6	41489 ± 5	0.99998 ± 0.00019

- Combining multiple operators across multiple channels can help to improve constraints and reduce blind directions
- Constraining 6 individual and 22 linear combinations of Wilson coefficients (linear).
- Several constraints driven by both ATLAS and LEP/SLD.
- Linear fits agree with the SM expectation for most fitted parameters, except for $c^{[4]}_{HVV,Vff}$ (excess driven by a well known discrepancy in $A^{0,b}_{FB}$ from the SM expectation.)


contribution

Electroweak WW + ≥ 1 jet

- Unexplored pp $\rightarrow e^{\pm} v \mu^{\mp} v + \text{jets}$ topology up to 5 jets.
- Fiducial integrated and differential cross sections in good agreement with SM with 10% uncertainty.
- Dim-6 C_W coefficient constrained also in high-p_T(leading jet) phase space using unfolded m_{eμ} cross-section
- High-p_T(leading jet) SR enhances the sensitivity to SM and EFT interference effect (backup)

Fit performed both for jet $p_T > 30$ and jet $p_T > 200 \text{ GeV}$

2×10²

3×10²

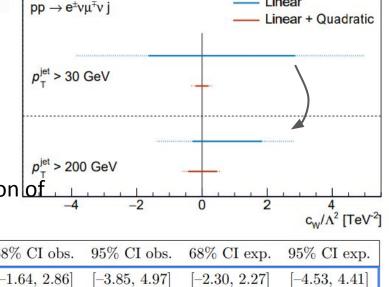
90 10²

3×102

90 10²

meu [GeV]

dim-6 aTGC in WW + ≥ 1 jet



68% CL

95% CL

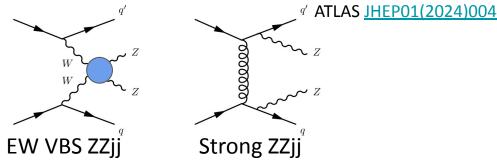
The total EFT amplitude :
$$\begin{vmatrix} A_{SM} + \sum_{i} c_i \cdot A_i \end{vmatrix}^2 = |A_{SM}|^2 + \sum_{i} c_i \cdot 2 \operatorname{Re}(A_{SM}^* \cdot A_i) + \sum_{i} c_i^2 \cdot |A_i|^2 + \sum_{i,j,\,i\neq j} c_i c_j \cdot \operatorname{Re}(A_i^* \cdot A_j) \\ \text{SM} & \text{Interference} & \text{Pure BSM} & \text{interference} \\ \text{of SM-BSM} & \text{(quadratic term)} \\ & \text{(linear term)} \end{vmatrix}$$

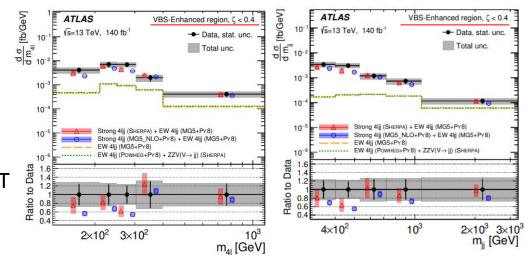
- Compare to see whether the pure BSM terms in EFT expansion are relevant in the different phase space.
- High-p_T jet SR enhances the sensitivity to effects proportional to c_W/Λ^2 due to the reduced suppression of the interference between the SM and the BSM.

	$\mathrm{Jet}\ p_{\mathrm{T}}$	Linear only	68% CI obs.	95% CI obs.	68% CI exp.	95% CI exp.
	$> 30\mathrm{GeV}$	yes	$[-1.64,\ 2.86]$	$[-3.85,\ 4.97]$	$[-2.30,\ 2.27]$	$[-4.53,\ 4.41]$
	$> 30\mathrm{GeV}$	no	$[-0.20,\ 0.20]$	$[-0.33,\ 0.33]$	$[-0.28,\ 0.27]$	[-0.39,0.38]
	$> 200\mathrm{GeV}$	yes	[-0.29, 1.84]	[-1.37, 2.81]	[-1.12, 1.09]	$[-2.24,\ 2.10]$
	$> 200\mathrm{GeV}$	no	$[-0.43,\ 0.46]$	[-0.60, 0.58]	$[-0.38,\ 0.33]$	[-0.53, 0.48]

ATLAS

 \sqrt{s} = 13 TeV, 139 fb⁻¹

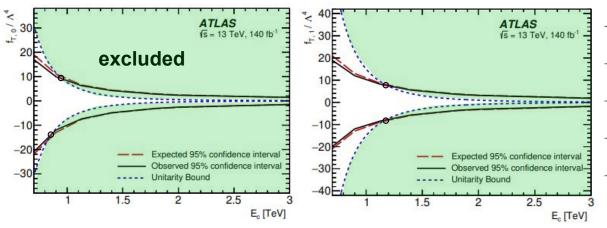

VBS ZZ + 2jets

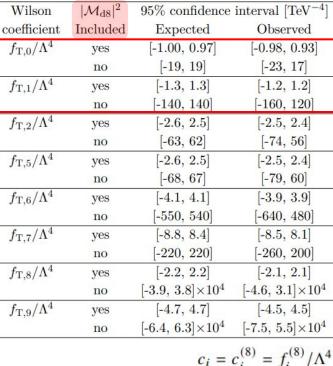


- Studying the rare VBS ZZ + 2 jets
- Differential cross-section measurement of 4 charged leptons + 2 jets production
- Key observables:
 - VBS sensitive

$$\Rightarrow$$
 $\mathbf{m}_{4l'}$ $p_{T}(4l)$, $\mathbf{m}_{jj'}$ $\Delta y_{jj'}$ $p_{T}(jj)$

- Polarization and CP structure of WWZ and WWZZ self-interactions
 - $\Rightarrow \cos\theta^*_{12'}, \cos\theta^*_{34'}, m_{ii'}, \Delta\phi_{ii'}, p_T (jj)$
- Sensitive to extra QCD radiation $\Rightarrow p_{\tau}(4|jj), S_{\tau}(4|jj)$
- The measurements are used to test EFT dim-8 and dim-6 operators O_T, aQGC

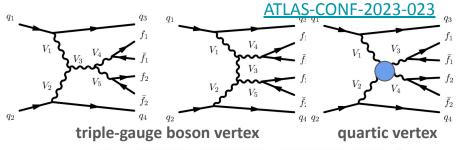

dim-8 aQGC in VBS ZZ+2jets

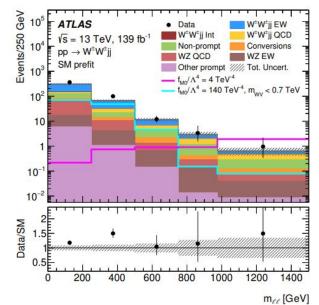


Constraints on the dim-8 aQGC including/excluding the pure dim-8 contributions

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + 2\operatorname{Re}(\mathcal{M}_{\mathrm{SM}}^*\mathcal{M}_{\mathrm{d8}}) + |\mathcal{M}_{\mathrm{d8}}|^2$$

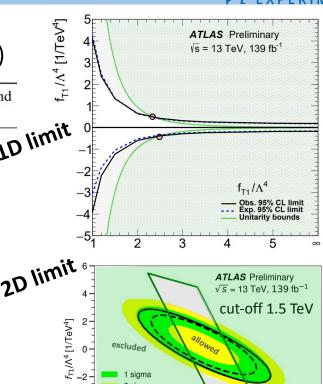
95% CI for dim-8 operators as a function of cut-off scale (m₄ < E_{cutoff}) using 2D (m_{ii}, m₄) fit.


(dim-6 limits are in backup)



VBS WW +2jets

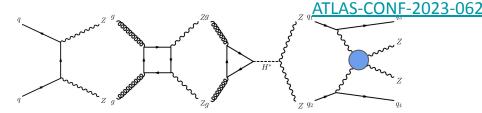
- Studying the rare VBS same-sign WW + 2 forward jets
- Fiducial and differential cross-sections for inclusive and EW-enhanced phase space
- The m_{||} is sensitive to constraint dim-8 wilson coefficients, and the binning is optimized.
 - \Rightarrow The boundaries of the last m_{||} bin are optimised to have best expected limits


dim-8 aQGC in VBS WW+2jets

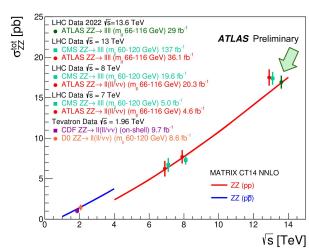
 95% Confidence Intervals on 8 different coefficients of aQGC (Linear+Quadratic; SM + Interference + pure BSM)

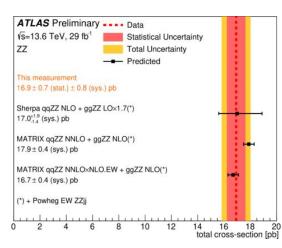
Coefficient	Type	No unitarisation cut-off Lo [TeV ⁻⁴]	ower, upper limit at the respective unitarity b $[\text{TeV}^{-4}]$	ound
c 114	Exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV	
$f_{\rm M0}/\Lambda^4$	Obs.	[-4.1, 4.1]	-140 at 0.7 TeV, 117 at 0.8 TeV	10
c 114	Exp.	[-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV	
$f_{\rm M1}/\Lambda^4$	Obs.	[-6.8, 7.0]	-45 at 1.4 TeV, 54 at 1.3 TeV	
c 114	Exp.	[-9.3, 8.8]	-33 at 1.8 TeV, 29.1 at 1.8 TeV	
$f_{\rm M7}/\Lambda^4$	Obs.	[-9.8, 9.5]	-39 at 1.7 TeV, 42 at 1.7 TeV	
c / A 4	Exp.	[-5.5, 5.7]	-94 at 0.8 TeV, 122 at 0.7 TeV	
$f_{\rm S02}/\Lambda^4$	Obs.	[-5.9, 5.9]	_	_
c / 4 4	Exp.	[-22.0, 22.5]	_	25
$f_{\rm S1}/\Lambda^4$	Obs.	[-23.5, 23.6]		
c 114	Exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV	
$f_{\rm T0}/\Lambda^4$	Obs.	[-0.36, 0.36]	-7.4 at 1.0 TeV, 12.4 at 0.9 TeV	
c 144	Exp.	[-0.158, 0.174]most tig	htly -0.32 at 2.6 TeV, 0.44 at 2.4 TeV	
$f_{\mathrm{T1}}/\Lambda^4$	Obs.	[-0.174, 0.186]constra	ned -0.38 at 2.5 TeV, 0.49 at 2.4 TeV	
£ / A 4	Exp.	[-0.56, 0.70]	-2.60 at 1.7 TeV, 10.3 at 1.2 TeV	
$f_{\rm T2}/\Lambda^4$	Obs.	[-0.63, 0.74]	-	

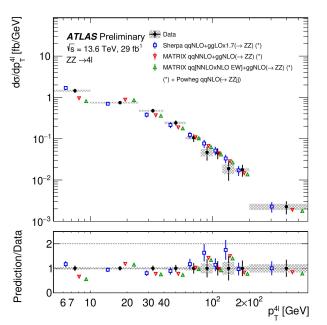
All other 1D, 2D limits are in backup


 $f_{T0}/\Lambda^4 [1/\text{TeV}^4]$

ZZ production at 13.6 TeV

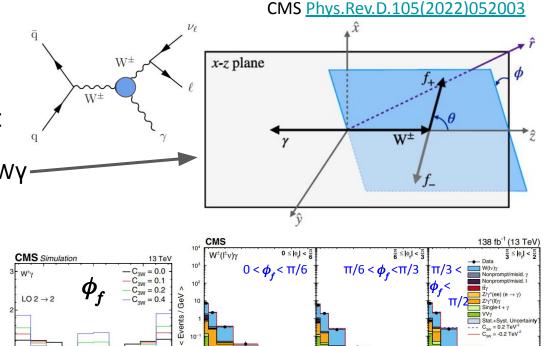

First measurements of integrated and differential fiducial cross-section using 13.6 TeV 2022 data (lumi = 29 fb⁻¹)




• 2 input observables sensitive to aTGCs: $ZZ \rightarrow 4I$, $ZZ \rightarrow 2I2V$, $H \rightarrow ZZ$ and EWK production

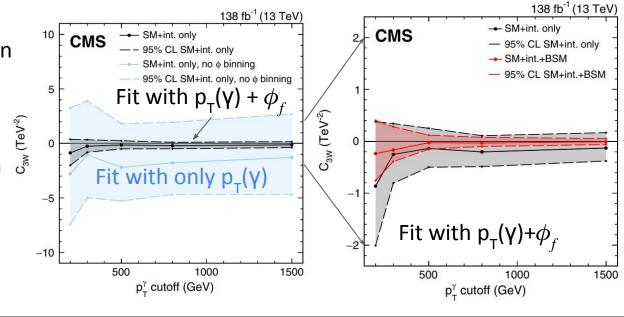
$$\circ$$
 m_{4l} , $p_{T}(4l)$

An excellent agreement of state-of-art-theory prediction with the data.



Electroweak Wy

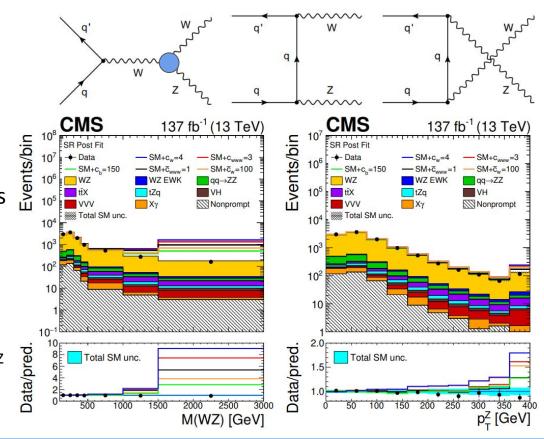
- 1 photon and 1 e/μ coming from W
- First differential cross section measurements at 13 TeV
- Target dim-6 C_{3W} coefficient for aTGC
- EFT effects in decay angle ϕ_f in the Wy center-of-mass frame to enhance sensitivity to SM-EFT interference "Interference resurrection"
- Important to capture the different final-state helicity configurations for the SM and BSM W_TV_T components_s
- Fit with 2D ϕ_f $p_T(\gamma)$


p_ (GeV)

dim-6 aTGC in Electroweak Wy

- Wy is a new kind of diboson EFT analysis using angular info in addition to high energy enhancement.
- 2 sigma limits as a function of $p_{T}(\gamma)$ cutoff
- ullet Information from ϕ_f dramatically improves sensitivity to interference
- Pure BSM term drives the overall results

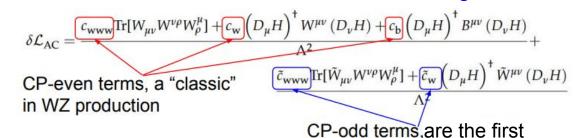
he		Best fit C_{3W} (TeV ⁻²)		Observed 95	5% CL (TeV ⁻²)	Expected 95% CL (TeV ⁻²)		
	$p_{\rm T}^{\gamma}$ cutoff (GeV)	SM + int. only	SM + int. + BSM	SM + int. only	SM + int. + BSM	SM + int. only	SM + int. + BSM	
	200	-0.86	-0.24	[-2.01, 0.38]	[-0.76, 0.40]	[-1.16, 1.27]	[-0.81, 0.71]	
	300	-0.25	-0.17	[-0.81, 0.34]	[-0.39, 0.28]	[-0.56, 0.60]	[-0.33, 0.33]	
	500	-0.13	-0.025	[-0.50, 0.25]	[-0.15, 0.12]	[-0.35, 0.38]	[-0.17, 0.16]	
	800	-0.20	-0.033	[-0.49, 0.11]	[-0.10, 0.08]	[-0.29, 0.31]	[-0.097, 0.095]	
	1500	-0.13	-0.009	[-0.38, 0.17]	[-0.062, 0.052]	[-0.27, 0.29]	[-0.066, 0.065]	



Electroweak WZ

CMS JHEP07(2022)032

- Three leptons (e or μ) with at least one OSSF pair coming from Z
 : Clean final state, high purity
- Measurement of the differential cross section for various observables
- Target dim-6 aTGC coefficients
- High tails of m_{wz} and p_T(Z) sensitive to presence of EFT effects
 - : Compute the EFT effect in the $\,\rm m_{WZ}^{}$



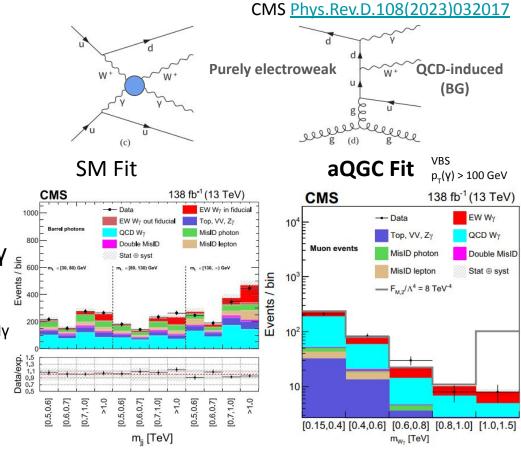
dim-6 Charged aTGC in Electroweak WZ

- The effect of CP-violating dim-6 operators is introduced for the first time in WZ, leading to CIs similar to those obtained in the CP-conserving case
- Provides stronger constraints than previous analyses by a factor of 2 (JHEP04(2019)122)
- Possible correlations across the CP-conserving EFT parameters are studied by producing 2D limit (backup)

CP-violating terms

SM + Interference + pure BSM

Parameter	$95\% \text{ CI, exp. } (\text{TeV}^{-2})$	95% CI, obs. (TeV^{-2})	Best fit, obs. (TeV^{-2})
$c_{ m w}/\Lambda^2$	[-2.0, 1.3]	[-2.5, 0.3]	-1.3
$c_{ m www}/\Lambda^2$	[-1.3, 1.3]	[-1.0, 1.2]	0.1
$c_{ m b}/\Lambda^2$	[-86, 125]	[-43, 113]	44
$\widetilde{c}_{ m www}/\Lambda^2$	[-0.76, 0.65]	[-0.62, 0.53]	-0.03
$\widetilde{c}_{ m w}/\Lambda^2$	[-46, 46]	[-32, 32]	0


introduced in WZ production

VBS Wγ+2jets

- Well-displaced 2 jets, 1 photon, and 1 lepton coming from W boson
- Measure inclusive and differential cross-sections in a VBS phase space
- Target dim-8 aQGC coefficient in EW VBS process
- Separate SRs for barrel γ and endcap γ
 2 approaches :
- SM fit performed using and m_{jj} and $m_{l\gamma}$
- EFT aQGCs would enhance yield at high-m_{wv} region

dim-8 aQGC in VBS Wy+2jets

- 95% Confidence Intervals on each aQGC coefficient (SM + Interference + pure BSM)
- The most stringent limits to date on :

$$f_{M2-5}$$
 / Λ^4 and f_{T6-7} / Λ^4

Provided U_{bound} [TeV] on scattering energy
 Beyond this bound, a scattering amplitude
 violate unitarity. (EFT expansion is not valid)

Expected limit	Observed limit	$U_{ m bound}$
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1}/\Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4}/\Lambda^4 < 3.3$	$-3.7 < f_{M,4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M.5}/\Lambda^4 < 3.6$	$-3.9 < f_{M.5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M,7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T,0}/\Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T.5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T,6}/\Lambda^4 < 0.25$	$-0.25 < f_{T,6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7}/\Lambda^4 < 0.68$	$-0.67 < f_{T,7}/\Lambda^4 < 0.73$	3.1

(TeV)

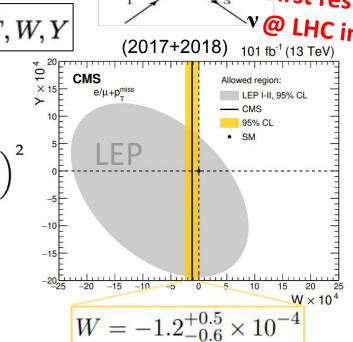
ATLAS also report **Wγ+2jets very recently!** arxiv:2403.02809 (Given in Júlia's talk)

EW Oblique parameter in high lv

CMS JHEP 07 (2022) 067

- New resonances, when too heavy to be produced on-shell, contribute to 4-fermion contact interactions (or modify W/Z propagators when universal)
- Deviations entirely parametrized by 4 parameters : \hat{S}, \hat{T}, W, Y
- W, Y grows with q^2 (\sqrt{s}): contribute to offshell DY

deviation weight


$$\left| \frac{P_W}{P_W^{(0)}} \right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2} \right)^2$$

t = tangent of the SM weak mixing angle (≈ 0.3)

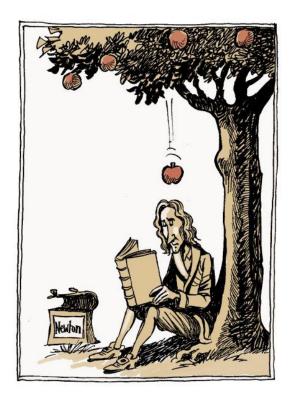
q = invariant mass of the l+v system at the hard scattering level

m_w= W boson mass

W, Y = oblique parameters

Conclusions

- Big efforts to scan all possible sources of indirect new physics effects with the EFT approach at the LHC
- Differential measurements of vector boson interactions provide unprecedented sensitivity to both anomalous Triple/Quartic Gauge Coupling (aTGC/aQGCs).
- Still No deviation from the SM was found.
- Global combination including Higgs, EWK and LEP/SLC EWPO are available.
- Further developments with more data, robust framework, advanced analysis techniques.
- Stay tune for upcoming results.


More results in ATLAS publications, CMS publications



Backup

Collisions That Changed The World

dim6 EFT operators

Gauge boson self-interactions highlighted

		$\mathcal{L}_6^{(1)}-X^3$		$\mathcal{L}_{6}^{(6)} - \psi^{2}XH$		$\mathcal{L}_6^{(8b)} - (ar{R}R)(ar{R}R)$	
	Q_G	$f^{abc}G^{a u}_{\mu}G^{b ho}_{ u}G^{c\mu}_{ ho}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \sigma^i H W^i_{\mu\nu}$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	
	$Q_{\widetilde{G}}$	$f^{abc}\widetilde{G}^{a u}_{\mu}G^{b ho}_{ u}G^{c\mu}_{ ho}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	
	Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \tilde{H} G^a_{\mu\nu}$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	
	$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \tilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	
		$\mathcal{L}_6^{(2)}$ – H^6	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	
	Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	
		${\cal L}_6^{(3)} - H^4 D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^a u_r)(\bar{d}_s \gamma^\mu T^a d_t)$	
	$Q_{H\Box}$	$(H^\dagger H)\Box(H^\dagger H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$			
1	Q_{HD}	$\left(D^{\mu}H^{\dagger}H\right)\left(H^{\dagger}D_{\mu}H\right)$					
		$\mathcal{L}_{6}^{(4)} - X^{2}H^{2}$		$\mathcal{L}_{6}^{(7)} - \psi^{2}H^{2}D$	$\mathcal{L}_{6}^{(8c)} - (\bar{L}L)(\bar{R}R)$		
	Q_{HG}	$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
	$Q_{H \widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
	Q_{HW}	$H^\dagger H W^i_{\mu\nu} W^{I\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
	$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^i_{\mu\nu} W^{i\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
	Q_{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
	$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu \nu} B^{\mu \nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r)(\bar{u}_s \gamma^\mu T^a u_t)$	
	Q_{HWB}	$H^\dagger \sigma^i H W^i_{\mu\nu} B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
	$Q_{H\widetilde{W}B}$	$H^\dagger \sigma^i H \widetilde{W}^i_{\mu \nu} B^{\mu \nu}$	$Q_{Hud} + \text{h.c.}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r)(\bar{d}_s \gamma^\mu T^a d_t)$	
		$\mathcal{L}_{6}^{(5)} - \psi^{2}H^{3}$	L	$\frac{c(8a)}{6} - (\bar{L}L)(\bar{L}L)$	$\mathcal{L}_6^{(8d)}$	$(\bar{L}R)(\bar{R}L), (\bar{L}R)(\bar{L}R)$	
	Q_{eH}	$(H^\dagger H)(\bar{l}_p e_r H)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	
	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	
	Q_{dH}	$(H^\dagger H)(\bar{q}_p d_r H)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r)(\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$	
			$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	
			$Q_{Ia}^{(3)}$	$(\bar{l}_{r}\gamma_{rr}\sigma^{i}l_{r})(\bar{q}_{s}\gamma^{\mu}\sigma^{i}q_{t})$	$Q_{low}^{(3)}$	$(\bar{l}_{r}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{r}^{k}\sigma^{\mu\nu}u_{t})$	

dim8 EFT operators for QGCs

Higgs field $(\mathcal{L}_s \text{ scalar type})$

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

Higgs - Gauge boson field $(\mathcal{L}_{M} \text{ mixed -scalar tensor type})$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$

$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

Set of dim-8 operators affecting quartic boson vertices:

Gauge boson field $(\mathcal{L}_{\tau}$ tensor type)

O. J. P. Éboli et al. <u>PhysRevD.74.073005</u>

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

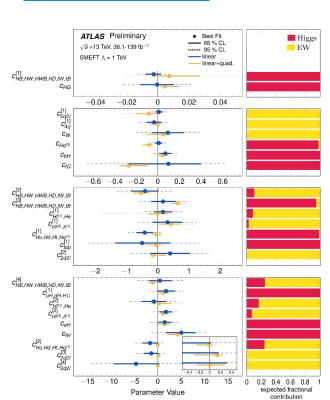
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

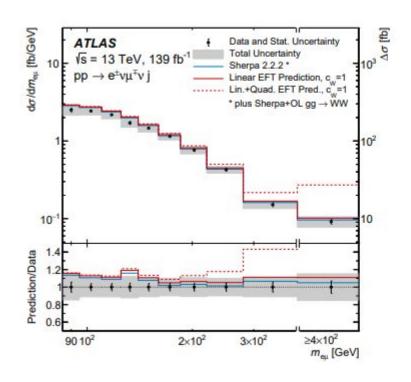
$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

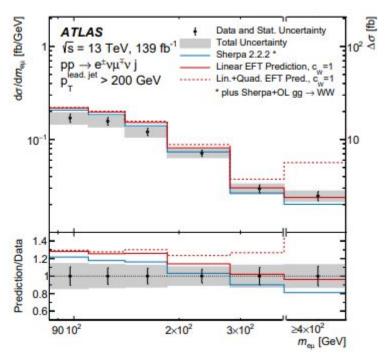
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$


	wwww	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$									
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Ŏ								
$\mathcal{O}_{M,2},\mathcal{O}_{M,3},\!\mathcal{O}_{M,4},\!\mathcal{O}_{M,5}$									
$\mathcal{O}_{T,0},\mathcal{O}_{T,1},\!\mathcal{O}_{T,2}$									
$\mathcal{O}_{T,5},\mathcal{O}_{T,6},\!\mathcal{O}_{T,7}$									
$\mathcal{O}_{T,8},\mathcal{O}_{T,9}$									

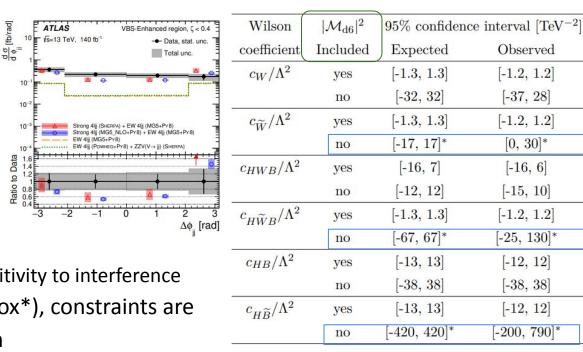
ATLAS Global combination of EFT result

ATL-PHYS-PUB-2022-037


Wilson coefficient and operator		Affected proc	ess group	
		LEP/SLD	ATLAS	ATLAS
		EWPO	Higgs	electroweak
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		√	
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$		✓	✓
c_W	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$		✓	✓
c_{HD}	$(H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$		✓	✓
c_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$		✓	
c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$		✓	
c_{HW}	$H^{\dagger}HW_{\mu\nu}^{I}W^{I\mu\nu}$		✓	
c_{HWB}	$H^{\dagger} \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	✓	✓	✓
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		✓	
c_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$		✓	
c_{tH}	$(H^{\dagger}H)(\bar{Q}\tilde{H}t)$		✓	
c_{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$		✓	
$c_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l)$	✓	✓	✓
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l)$	✓	✓	✓
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)$	✓	✓	✓
$c_{Hq}^{(1)} \ c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	✓	✓	✓
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	✓	✓	✓
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	✓	✓	✓
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	✓	✓	✓
$c_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	✓	✓	
$c_{HQ}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	✓	✓	
c_{Hb}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	✓		
c_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	✓	✓	
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\tilde{H}G^A_{\mu\nu}$		✓	
c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \tilde{H} W^I_{\mu\nu}$		✓	
c_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H} B_{\mu\nu}$		✓	
c_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	✓		✓

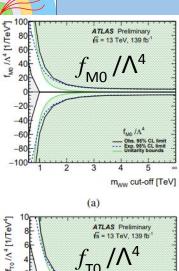

		7 4	LAFL	K I IVI L IVI I
Wilson coefficient and operator		Affected proces	ss group ATLAS	ATLAS
		EWPO	Higgs	electroweak
(1)			88-	
$c_{lq}^{(1)}$	$(\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q)$			√
$c_{lq}^{(3)}$	$(\bar{l}\gamma_{\mu}\tau^{I}l)(\bar{q}\gamma^{\mu}\tau^{I}q)$			√
c_{eu}	$(\bar{e}\gamma_{\mu}e)(\bar{u}\gamma^{\mu}u)$			√
c_{ed}	$(\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d)$			√
c_{lu}	$(\bar{l}\gamma_{\mu}l)(\bar{u}\gamma^{\mu}u)$			√
c_{ld}	$(\bar{l}\gamma_{\mu}l)(\bar{d}\gamma^{\mu}d)$			
$\frac{c_{qe}}{c_{qq}^{(1,1)}}$	$(\bar{q}\gamma_{\mu}q)(\bar{e}\gamma^{\mu}e)$			
$c_{qq}^{(1,8)}$	$(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q)$			√
$c_{qq} = (3,1)$	$(\bar{q}T^a\gamma_\mu q)(\bar{q}T^a\gamma^\mu q)$			√ √
$c_{qq}^{(3,1)}$ (3,8)	$(\bar{q}\sigma^i\gamma_\mu q)(\bar{q}\sigma^i\gamma^\mu q)$			√
$c_{qq}^{(3,8)}$ $c_{uu}^{(1)}$	$(\bar{q}\sigma^i T^a \gamma_\mu q)(\bar{q}\sigma^i T^a \gamma^\mu q)$			V
$c_{uu}^{(8)}$	$(\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u)$			√
$c_{dd}^{(1)}$	$(\bar{u}T^a\gamma_\mu u)(\bar{u}T^a\gamma^\mu u)$			√
$c_{dd}^{(8)}$	$(\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d)$			√
$c_{ud}^{(1)}$	$(\bar{d}T^a \gamma_\mu d)(\bar{d}T^a \gamma^\mu d)$			√
$c_{ud}^{(8)}$	$(\bar{u}\gamma_{\mu}u)(\bar{d}\gamma^{\mu}d)$ $(\bar{u}T^{a}\gamma_{\mu}u)(\bar{d}T^{a}\gamma^{\mu}d)$			√
$c_{ud}^{(1)}$ $c_{qu}^{(1)}$				V
$c_{qu}^{(8)}$	$(\bar{q}\gamma_{\mu}q)(\bar{u}\gamma^{\mu}u)$			√
$c_{qd}^{(1)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{u}T^a\gamma^\mu u)$ $(\bar{q}\gamma_\mu q)(\bar{d}\gamma^\mu d)$			V
$c_{qd}^{(8)}$	$(q\gamma_{\mu}q)(a\gamma^{-}a)$ $(\bar{q}T^{a}\gamma_{\mu}q)(\bar{d}T^{a}\gamma^{\mu}d)$			√
$\frac{c_{qd}}{c_{Qq}^{(1,1)}}$			√	v
$c_{Qq}^{(1,8)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$ $(\bar{Q}T^{a}\gamma_{\mu}Q)(\bar{q}T^{a}\gamma^{\mu}q)$		V	
$c_{Qq}^{(3,1)}$	$(\bar{Q}I^{i}\gamma_{\mu}Q)(qI^{i}\gamma^{\mu}q)$ $(\bar{Q}\sigma^{i}\gamma_{\mu}Q)(\bar{q}\sigma^{i}\gamma^{\mu}q)$		√	
(3.8)	$(\bar{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\bar{q}\sigma^{i}T^{q})$ $(\bar{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\bar{q}\sigma^{i}T^{a}\gamma^{\mu}q)$		v	
$c_{Qq}^{(0,0)}$ $c_{tu}^{(1)}$	$(\bar{q}\sigma T^{-}\gamma_{\mu}Q)(q\sigma T^{-}\gamma^{-}q)$ $(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$		√	
$c_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$ $(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$		· /	
$C^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$ $(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$		V	
$c_{Qu}^{(8)}$ $c_{Qd}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$ $(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$		V	
$c_{Qd}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$ $(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$		√	
$c_{tq}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$ $(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$, ,	
$c_{tq}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$ $(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$		· /	
-tq	(a- (μα)(vx / v)		•	

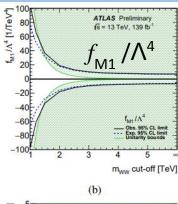
Electroweak WW + ≥ 1 jet

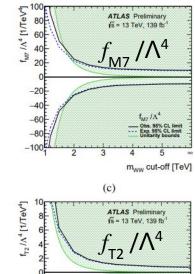


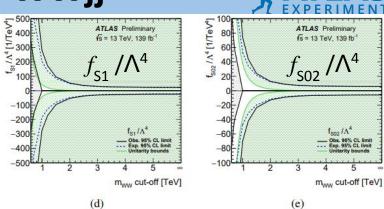
Interference Resurrection (VBS ZZ+2jets)

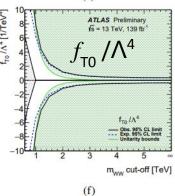
arxiv:1708.07823 Diboson interference resurrection

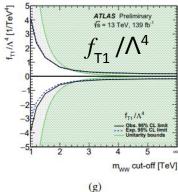

- The interference cannot be experimentally detected with "inclusive" observables
- Different helicity configurations for SM and BSM components
 ⇒ Leads to suppression of
 - interference
- Try exclusive measurement!
 (ex) Differential angle acquires sensitivity to interference
- CP-odd dim-6 operators (blue box*), constraints are obtained using $\Delta\phi_{jj}$ distribution
 - ⇒ large asymmetric effects for SM-EFT interference.

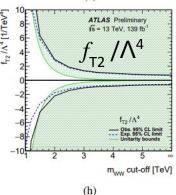




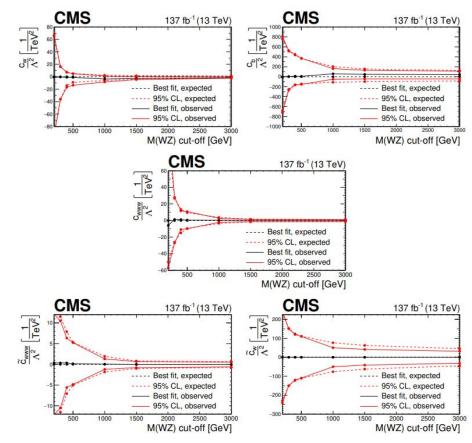

dim8 aTGC in VBS WWjj





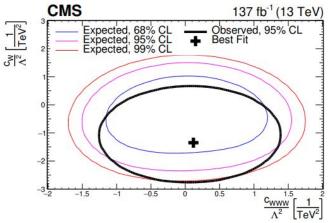


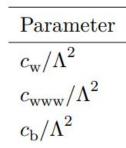
95% Cls of the EFT dim8 operator coefficients (quartic operators) as a function of the m_{ww} cut-off scale.

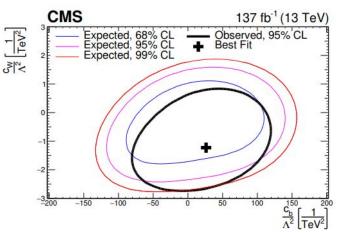

M7 without considering SM-EFT interference for EW WZjj final state

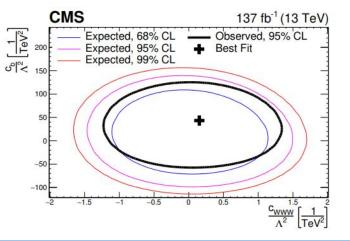
Charged aTGC in Electroweak WZ

 compute the EFT effect in the high tails of M(WZ)



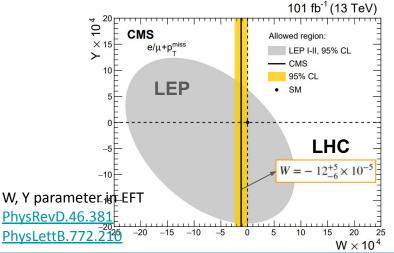

2D Limit on CP conserving aTGC in WZ




Possible correlations
 across the CP-conserving
 EFT terms are studied by
 producing 2D CIs

CP-conserving terms

EFT - Composite Higgs Interpretation

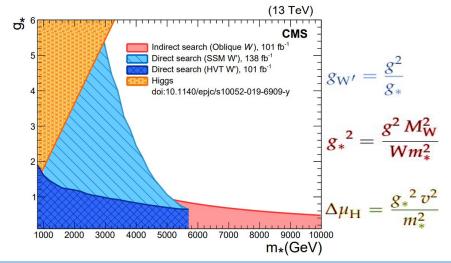


Effective Field Theory Approach

EFT approach quantifies potential deviations from the SM expectations through the W parameter

$$\left| \frac{P_W}{P_W^{(0)}} \right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W(q^2 - m_W^2)}{m_W^2} \right)^2$$

Modified SM predictions by **reweighting method.**Compared with data and set the W-parameter



Composite Higgs boson models

Input for this reinterpretation comes in 3 complementary ways

- 1. **direct W' search**: W' boson to be a composite resonance. The gauge coupling to the new constituents is g*
- 2. **indirect EFT approach** : *W* parameter is used to quantify deviations from the SM.
- 3. <u>Higgs</u>: NP modify SM prediction of H prod/decay modification can be scaled.

