LA THUILE 2024

$tt\boldsymbol{X} \text{ and } t\boldsymbol{X}$

Peter Berta

Charles University

(on behalf of the ATLAS and CMS Collaborations)

 $7^{\rm th}$ March 2024

This project has received funding from the Czech Science Foundation under grant GA24-11373S.

Top quark is special

- The heaviest known elementary particle
 - largest Yukawa coupling $y_t \approx 1$
 - unique properties from experimental and theoretical side
- Very short lifetime
 - the only quark which does not hadronize
 - properties studied via its decay products
- The main ingredient of many BSM scenarios

CERN Courier

Top quark production

Top Quark Production Cross Section Measurements

ATL-PHYS-PUB-2023-038

• $t\bar{t}$ and single-top production presented by Louise Skinnari (Thursday 8:30)

• Focusing on rare top-production processes in this talk: ttX and tX

Recent ttX and tX results

• ATLAS Collaboration:

- Observation of four-top-quark production: Eur. Phys. J. C 83 (2023) 496
- tTW inclusive and differential cross sections: arXiv:2401.05299
- ttZ inclusive and differential cross sections: arXiv:2312.04450
- Search for flavor-changing neutral tqH interaction: JHEP 12 (2023) 195

• CMS Collaboration:

- Observation of four top quark production: Phys. Lett. B 847 (2023) 138290
- Evidence for *tWZ* production: arXiv:2312.11668
- Search for flavor changing neutral $tq\gamma$: arXiv:2312.08229
- Search for flavor-changing neutral tqH interaction: CMS-PAS-TOP-22-002

ATLAS: Four-top-quark observation

• Eur. Phys. J. C 83 (2023) 496

- Two same-charge leptons or \geq 3 leptons
- Graph Neural Network used to separate signal from background
- Observed (expected) sign.: 6.1 (4.3) σ
- Measured cross section: $22.5^{+6.6}_{-5.5}$ fb
 - 1.8 σ consistency with the SM prediction (12.0 \pm 2.4 fb at NLO(QCD+EW))

Constrained four-heavy-quark SMEFT operators

Operators	Expected C_i/Λ^2 [TeV $^{-2}$]	Observed C_i/Λ^2 [TeV $^{-2}$]
\mathcal{O}_{00}^1	[-2.5, 3.2]	[-4.0, 4.5]
$\mathcal{O}_{Ot}^{\tilde{1}}$	[-2.6, 2.1]	[-3.8, 3.4]
$\mathcal{O}_{tt}^{\tilde{1}}$	[-1.2, 1.4]	[-1.9, 2.1]
\mathcal{O}_{Qt}^{8}	[-4.3, 5.1]	[-6.9, 7.6]

CMS: Four-top-quark observation

• Phys. Lett. B 847 (2023) 138290

- Two same-charge leptons or \geq 3 leptons
- Multi-class Boosted Decision Tree to separate signal from background
- \bullet Observed (expected) sign.: 5.6 (4.9) σ
- Measured cross section: $17.7^{+3.7}_{-3.5}(\text{stat})^{+2.3}_{-1.9}(\text{syst})$ fb
 - consistent with the SM prediction

Cross section measurements of four-top-quark production

ATL-PHYS-PUB-2023-035

ATLAS: $t\bar{t}Z$

• arXiv:2312.04450

- Selections with 2, 3, and 4 leptons
- Deep Neural Networks used to separate signal from background
- Measured cross section: $0.86 \pm 0.04(stat) \pm 0.04(syst) \text{ pb}$
 - consistent with the SM prediction (0.86 \pm 0.09 $\rm pb$ at NLO(QCD+EW)+NNLL)
- Spin correlations of the top quarks
 - consistent with the SM prediction
 - 1.8 σ difference from the hypothesis of no spin correlations

ATLAS: $t\bar{t}Z$, cont.

- Differential cross sections
 - Many observables $(N_{\text{jets}}, H_T^{\ell}, p_T^t, \dots)$
 - Unfolded to parton and particle level in fiducial phase spaces
 - Measured spectra consistent with SM
- Constrained top-electroweak and four-quark SMEFT operators

ATLAS: $t\bar{t}W$

- arXiv:2401.05299
- Two same-charge or three leptons
- \bullet Measured cross section: $0.88\pm0.08~{\rm pb}$
 - consistent with the SM prediction $(0.75 \pm 0.05 \ \mathrm{pb}$ at NNLO(QCD)+NLO(EW))

ATLAS: $t\bar{t}W$, cont.

- Differential cross sections
 - First such measurement in this topology
 - Jet and lepton observables ($N_{\text{jets}}, H_T^{\text{jet}}, \Delta \Phi_{\ell\ell}, \dots$)
 - Unfolded to particle level in a fiducial phase space
 - Measurements consistent with SM
- Measured $t\bar{t}W^+$ vs $t\bar{t}W^-$ charge asymmetry

Cross section measurements of associated $t\bar{t}$ production

ATL-PHYS-PUB-2023-035

CMS: tWZ

• arXiv:2312.11668

- Selections with 3 and 4 leptons
- $t\bar{t}Z$ is the main background
- Deep Neural Network used to separate signal from background
- The first evidence
 - observed significance: 3.4σ
 - expected significance: 1.4σ
- Measured cross section: $354 \pm 54(\text{stat}) \pm 95(\text{syst}) \text{ fb}$
 - 2σ above the SM prediction (136 ± 9 fb at NLO(QCD))

Cross section measurements of associated top production

CMS: Search for flavor changing neutral current $t\gamma q$

- arXiv:2312.08229
- FCNC:
 - single top produced in association with a photon
 - $t\overline{t}$ pair where one of the top quarks decays $t
 ightarrow u\gamma$
- $\bullet\,$ Selection: 1 lepton and 1 $\gamma\,$
- Boosted Decision Trees used to separate signal from background
- No excess from FCNC contributions is observed
- Obtained limits:

$$\begin{array}{ll} \kappa_{tu\gamma} < 6.2 \cdot 10^{-3} & (\text{exp. } 6.9 \cdot 10^{-3}) \\ \kappa_{tc\gamma} < 7.7 \cdot 10^{-3} & (\text{exp. } 7.8 \cdot 10^{-3}) \\ BR(t \to u\gamma) < 0.95 \cdot 10^{-5} \\ BR(t \to c\gamma) < 1.51 \cdot 10^{-5} \end{array}$$

ATLAS: Search for flavor-changing neutral tqH

- JHEP 12 (2023) 195
- FCNC:
 - single top produced in association with a Higgs boson
 - $t\overline{t}$ pair where one of the top quarks decays t
 ightarrow qH
- Target decay $H \rightarrow \gamma \gamma$
- Boosted Decision Trees used to separate signal from background
- Exploiting the diphoton invariant mass
- No excess from FCNC contributions is observed

ATLAS: Search for flavor-changing neutral tqH, cont.

• Combination with earlier searches targeting H
ightarrow au au and $H
ightarrow b ar{b}$

CMS: Search for flavor-changing neutral tqH

• CMS-PAS-TOP-22-002

- FCNC:
 - single top produced in association with a Higgs boson
 - $t \overline{t}$ pair where one of the top quarks decays t
 ightarrow q H
- Target decays $H \rightarrow \tau \tau$, $H \rightarrow WW$, or $H \rightarrow ZZ$
 - Two same-charge leptons
- Boosted Decision Trees used to separate signal from background
- No excess from FCNC contributions is observed

CMS: Search for flavor-changing neutral tqH, cont.

• Combination with earlier searches targeting $H \to \gamma \gamma$ and $H \to b \bar{b}$

Constraints to FCNC couplings

Summary

- ATLAS and CMS experiments have an extensive physics program to target ttX and tX processes
- Recent highlights presented:
 - Observation of four-top-quark production from both collaborations
 - $t\bar{t}W$ and $t\bar{t}Z$ inclusive and differential cross section measurements from the ATLAS Collaboration
 - Evidence for tWZ process from the CMS Collaboration
 - FCNC tqH and $tq\gamma$ searches
 - Improvement in the limits with respect to previous searches