

Top Measurements at ATLAS & CMS

Louise Skinnari (Northeastern University) presenting results from the ATLAS & CMS Collaborations

La Thuile: Les Rencontres de Physique de la Vallée d'Aoste, 07/03/2024

Why top quark physics?

- Mass: Heaviest known elementary particle, Yukawa coupling (y_t) ≈ 1
- Lifetime: Extremely short-lived → decays before hadronizing → observe properties of bare quark
- A unique candidate for studying QCD processes, and provides a window to new physics through <u>direct</u> & <u>indirect</u> searches
- Many new results over the past year! Focusing here on select recent results, see also:
 - + **ATLAS:** <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
 - CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>

Top quark measurements

Top quark measurements play an essential role in testing the Standard Model (SM)

EWK Single-Top Production s, t, tW channel production, tX+ttX processes discussed in Peter Berta's Potentiation, Vtb, FCNC, W-helicity, mass

Top quark pair production

- Test QCD predictions & extract SM parameters
- Constrain top quarks as background process

LHCTopWGSummaryPlots

Compatibility with theory predictions at high order in perturbation theory

Top quark pair production

- Test QCD predictions & extract SM parameters
- Constrain top quarks as background process

LHCTopWGSummaryPlots

Compatibility with theory predictions at high order in perturbation theory

Top quark pair production

- Test QCD predictions & extract SM parameters
- Constrain top quarks as background process

LHCTopWGSummaryPlots

Compatibility with theory predictions at high order in perturbation theory

tt @ 13.6 TeV

- Combination of dilepton
 - Using 1.21 fb⁻¹ of data col
- Likelihood fit in bins of:
 - Number/flavor of leptons
 - Number of b-jets
 - Number of jets
 - b-tagging and lepton ID efficiency calibrated in-situ
- Dominant uncertainties:
 - Integrated luminosity, lepton identification, b-tagging efficiency
- Inclusive cross section: $\sigma_{t\bar{t}} = 881 \pm 23(\text{stat} + \text{syst}) \pm 20(\text{lumi}) \text{ pb}$

 $\sigma_{t\bar{t}}^{\text{theory}} = 924^{+32}_{-40} \text{ pb}$

~3.5% total uncertainty

tt @ 13.6 TeV (ATLAS)

- Measurement targets most pure final state (dilepton eµ)
 - Using full 2022 data of 29 fb⁻¹

Inclusive cross section:

 $\sigma_{t\bar{t}} = 850 \pm 3(\text{stat}) \pm 18(\text{syst}) \pm 20(\text{lumi}) \text{ pb}$

$$\sigma_{t\bar{t}}^{\text{theory}} = 924^{+32}_{-40} \text{ pb}$$

~3.2% total uncertainty

Single top quark produc

Cross section

 extractions rely on
 multivariate
 techniques to
 distinguish signal
 from backgrounds

Top quarks everywhere

- Top quarks also studied in lead (pPb, PbPb) collisions
 - + First observation of top quarks in pPb collisions (CMS)
 - + Evidence for ttbar production in PbPb collisions (CMS)

PRL 119 (2017) 242001
PRL 125 (2020) 222001

- Precise probe of nuclear gluon density
- New result from ATLAS:
 - Observation of ttbar production in pPb collisions at 8.16 TeV in lepton+jets & dilepton channels
 - + Measurement:

 $\sigma_{t\bar{t}} = 57.9 \pm 2.0 (\text{stat})^{+4.9}_{-4.5} (\text{syst}) \text{ nb}$

 Total integrated cross section uncertainty of ~9%

ATLAS-CONF-2023-063

Jet substructure (ATLAS)

- Measurement of jet substructure inside merged "top jets"
 - Utilize high-p⊤ (boosted) top quarks decaying hadronically, with decay products collimated into single large-R jetīī
 - R=1.0 top jets
 - Fully hadronic and semi-leptonic final states considered
 - Test modeling of substructure variables for top taggers, important tests of QCD, sensitivity to BSM physics

arXiv:2312.03797

Jet substructure (ATLAS)

- Measure single- and double-differential cross sections
 - Two-body substructure variables generally rather well-described
 - + Three-body substructure variables less well described => data favor lower scale / higher α_s than in nominal final-state radiation (FSR)
 - Important information for MC development

Ratio of energy correlation functions

Ratio of n-subjettiness variables

Quantum entanglement (ATLAS)

- Study quantum entanglement in quarks!
- Short top quark lifetime → spin information is transferred to its decay products → <u>spin correlations</u> are observable
 - + Spin correlations well-established in top physics, see e.g.:

CMS: <u>PRD 100, 072002 (2019)</u>, ATLAS: <u>EPJC 80 (2020) 754</u>

- Use spin correlations to probe effects of quantum entanglement
- New ATLAS analysis utilizes very clean dilepton (eµ) final state

Quantum entan

- Observable D (degree of enta ttbar kinematics
- Events separated by m(tt)
 - + <u>340 < m(tt) < 380 GeV</u> entanglement signal region
 - <u>380 < m(tt) < 500 GeV</u>
 validation region (dilution from mis-reconstruction)
 - <u>m(tt) > 500 GeV</u>
 no-entanglement
 validation region
 - Highly-boosted region also has sensitivity, analysis choice to use low m(tt) region

Entanglement vs m(tt) & top angle w.r.t beam

Entangled (gg→tt in maximally entangled spin singlet)

Quantum entanglement

- Measurement: $D = -0.547 \pm 0.002(\text{stat}) \pm 0.020(\text{syst})$
- >5σ observation of entanglement in a pair of quarks and highest-energy observation of entanglement to date

arXiv:2311.07288

Top quark mass (ATLAS+CMS)

- New Run-1 ATLAS+CMS top quark mass combination!
- Why measure top quark mass?
 - A fundamental SM parameter, must be measured experimentally
 - ◆ Stability of effective SM Higgs potential sensitive to m_{top}/m_H
 - If not, new physics needed to stabilize it

Top quark mass

- Combination of **15** ATLAS+CMS top quark mass measurements
 - + Performed using 7/8 TeV data
 - Different final states: dilepton, l+jets, all-jets
 - Other topologies (fits to invariant masses that are sensitive to m_{top}): single top (t-channel), secondary vertex, J/Psi
- <u>Method</u>: Best Linear Unbiased Estimated BLUE

$$m_{\rm t} = \sum_{i} w_i m_{\rm t}^i$$
 where $\sum_{i} w_i = 1$

- To estimate correlations:
 - Split systematics into sources
 - Assign / assess correlations
 - Sum covariance matrices

	A		134		3								٧S	= /	,8 16	V	
ATLAS dil 7 TeV	1.00	-0.07	0.42	0.51	0.06	0.07	0.13	0.22	0.11	0.18	0.23	0.13	0.10	-0.06	-0.15		ון
ATLAS lj 7 TeV	-0.07	1.00	-0.01	0.00	-0.07	-0.02	0.09	0.08	0.03	0.08	0.04	0.01	0.10	0.02	-0.04		0.8
ATLAS aj 7 TeV	0.42	-0.01	1.00	0.29	-0.06	0.00	0.11	0.19	0.11	0.13	0.21	0.16	0.09	-0.01	-0.04		06
ATLAS dil 8 TeV	0.51	0.00	0.29	1.00	-0.18	0.31	0.09	0.16	0.08	0.12	0.16	0.10	0.07	-0.04	-0.10		0.0
ATLAS lj 8 TeV	0.06	-0.07	-0.06	-0.18	1.00	-0.03	0.02	-0.00	-0.00	-0.04	0.05	-0.03	0.03	-0.01	0.00		0.4
ATLAS aj 8 TeV	0.07	-0.02	0.00	0.31	-0.03	1.00	0.10	0.11	0.06	-0.01	0.14	0.08	0.07	0.01	0.10		0.2
CMS dil 7 TeV	0.13	0.09	0.11	0.09	0.02	0.10	1.00	0.31	0.57	0.31	0.46	0.36	0.26	0.08	0.13		0.2
CMS lj 7 TeV	0.22	0.08	0.19	0.16	-0.00	0.11	0.31	1.00	0.53	0.10	0.41	0.45	0.29	-0.03	0.03		0
CMS aj 7 TeV	0.11	0.03	0.11	0.08	-0.00	0.06	0.57	0.53	1.00	0.12	0.34	0.35	0.21	-0.03	0.07		0.2
CMS dil 8 TeV	0.18	0.08	0.13	0.12	-0.04	-0.01	0.31	0.10	0.12	1.00	0.23	0.07	0.09	-0.04	-0.16		-0.2
CMS lj 8 TeV	0.23	0.04	0.21	0.16	0.05	0.14	0.46	0.41	0.34	0.23	1.00	0.70	0.48	0.06	0.15	_	-0.4
CMS aj 8 TeV	0.13	0.01	0.16	0.10	-0.03	0.08	0.36	0.45	0.35	0.07	0.70	1.00	0.47	0.05	0.22		06
CMS t 8 TeV	0.10	0.10	0.09	0.07	0.03	0.07	0.26	0.29	0.21	0.09	0.48	0.47	1.00	-0.01	0.08		-0.0
CMS J/ Ψ 8 TeV	-0.06	0.02	-0.01	-0.04	-0.01	0.01	0.08	-0.03	-0.03	-0.04	0.06	0.05	-0.01	1.00	0.12		-0.8
CMS vtx 8 TeV	-0.15	-0.04	-0.04	-0.10	0.00	0.10	0.13	0.03	0.07	-0.16	0.15	0.22	0.08	0.12	1.00	_	_1
ATLA ATLA ATLA ATLA ATLA CMS																	

ATI ACICMC

SoftwareX 11 (2020) 100468

70 TaV

18

EPJC 74 (2014) 3004

Top quark mass

arXiv:2404.08713

• <u>Result:</u>

$m_{\rm t} = 172.52 \pm 0.14 ({\rm stat}) \pm 0.30 ({\rm syst}) \,\,{\rm GeV}$

- Total uncertainty of
 0.33 GeV (0.2%) !!
- Most precise measurement of top quark mass to date
- Uncertainty dominated by systematic sources (JES, b-tagging, tt
 tagging, tt

	Uncertainty impact [GeV]						
Uncertainty category	LHC	ATLAS	CMS				
b-JES	0.18	0.17	0.25				
b tagging	0.09	0.16	0.03				
ME generator	0.08	0.13	0.14				
JES 1	0.08	0.18	0.06				
JES 2	0.08	0.11	0.10				
•••	•••	•••					
Total systematic	0.30	0.41	0.39				
Statistical	0.14	0.25	0.14				
Total	0.33	0.48	0.42				

Lepton flavor violation (CMS)

- Charged-lepton flavor violation (CLFV) extremely rare in the SM
- New analysis using Run-2 data in three-lepton (e/ μ) final states
 - Separate regions to target top production and decay signals
 - Parametrize signals with dim-6 effective field theory (EFT) operators

- Previous searches involving eµtq interaction (<u>ATLAS-CONF-2018-044</u>, CMS: <u>JHEP</u> <u>06 (2022) 082</u>) compatible with the SM
- Recent result on μτtq interaction also consistent with the SM (<u>ATLAS-</u> <u>CONF-2023-001</u>)

arXiv:2312.03199

Lepton flavor violation (CMS)

arXiv:2312.03199

• BDT trained for each signal region (production vs decay signals)

- No significant excess over SM expectation \rightarrow most stringent limits to date on BR(t => eµq) Int. type $\mathcal{B}(t \rightarrow e\mu u) \times 10^{-7}$ $\mathcal{B}(t \rightarrow e\mu c)$
 - Improving upon previous limits by an order of magnitude

Int. type	$\mathcal{B}(t{ ightarrow}e\mu u){ ightarrow}10^{-7}$	$\mathcal{B}(t{ ightarrow}e\mu c){ ightarrow}10^{-7}$
Tensor	0.32	4.98
Vector	0.22	3.69
Scalar	0.12	2.16

Baryon number violation (CMS)

arXiv:2402.18461

Outlook

- Measurements in top quark sector are key in continuing testing the SM & searching for physics beyond it
 - On one hand, pushing the precision limit in e.g. cross section and mass measurements: Top mass measured to the 0.2% level !
 - On the other hand, novel analyses carried out: Quantum entanglement, substructure measurements, hunts for deviations from the SM
- Top quark physics forms an exciting and very active research program at the LHC!

Collision event displays of top-quark production from ATLAS (left) and CMS (right). (Image: ATLAS/CMS/CERN)

<u>CMS AND ATLAS UNITE TO WEIGH IN ON</u> <u>THE TOP QUARK</u>

02 OCT 2023

The ATLAS and CMS Experiments at CERN have just released a new measurement of the mass of the top quark. The new result combines 15 previous measurements to give the most precise determination of the top-quark mass to date.

Among the known...

READ MORE

Rut: 4265 Event: 625 Oste610 Oste610

Physics Briefings:

and at CMS

Top quark mass <u>ATLAS+CMS</u>

Top entanglement from ATLAS

13.6 TeV measurements at ATLAS

ATLAS moves into top gear for Run 3

The ATLAS Collaboration has just released its first Run 3 measurements, studying data collected in the first half of August 2022. Researchers have measured the interaction strength (or cross-section) of two well-known processes: the production of a pair of top quarks and the production of a Z boson.

Physics Briefing I 30 November 2022

TOP QUARKS FAST TO ARRIVE AT NEW ENERGY FRONTIER 24 OCT 2022

On 5 July 2022, the LHC surpassed the previous energy limits of experimental particle physics, breaking its own record by achieving stable proton-proton collisions at a center-of-mass energy of \sqrt{s} = 13.6 TeV. This marked the start of Run 3, the...

READ MORE

ATLAS achieves highest-energy detection of quantum entanglement

In a new result from the ATLAS Collaboration, physicists observed – for the first time – quantum entanglement between a pair of quarks. This is the highest-energy measurement of entanglement to date.

Physics Briefing I 28 September 2023

BACKUP

References

Discussed here:

- Measurement of ttbar cross section at 13.6 TeV (CMS): <u>JHEP 08 (2023) 204</u>
- Measurement of ttbar cross section at 13.6 TeV (ATLAS): <u>PLB 848 (2024) 138376</u>
- ttbar production in pPb collisions at 8.16 TeV (ATLAS): <u>ATLAS-CONF-2023-063</u>
- Jet substructure (ATLAS): <u>arXiv:2312.03797</u>
- Quantum entanglement (ATLAS): <u>arXiv:2311.07288</u>
- Run-1 top mass combination (ATLAS+CMS): <u>arXiv:2404.08713</u>
- Search for charged-lepton flavor violation (CMS): <u>arXiv:2312.03199</u>
- Search for baryon number violation (CMS): <u>arXiv:2402.18461</u>

Other recent top quark measurements:

- Differential tt+jets cross section at 13 TeV (CMS): <u>arXiv:2402.08486</u>
- Differential tt+jets cross section at 13 TeV (ATLAS): <u>ATLAS-CONF-2023-068</u>
- Inclusive and differential tt+bb measurement at 13 TeV (CMS): <u>arXiv:2309.14442</u>
- + Inclusive and differential ttbar cross section at 13 TeV (ATLAS): JHEP 07 (2023) 141
- Search for Lorentz invariance in ttbar events (CMS): <u>CMS-PAS-TOP-22-007</u>
- Single top t-channel production at 13 TeV (ATLAS): <u>arXiv:2403.02126</u>
- Single top t-channel production at 5 TeV (ATLAS): <u>arXiv:2310.01518</u>

Top quark mass

Uncortainty category	Uncertainty impact [GeV]					
	LHC	ATLAS	CMS			
b-JES	0.18	0.17	0.25			
b tagging	0.09	0.16	0.03			
ME generator	0.08	0.13	0.14			
JES 1	0.08	0.18	0.06			
JES 2	0.08	0.11	0.10			
Method	0.07	0.06	0.09			
CMS b hadron ${\cal B}$	0.07	—	0.12			
QCD radiation	0.06	0.07	0.10			
Leptons	0.05	0.08	0.07			
JER	0.05	0.09	0.02			
CMS top quark $p_{\rm T}$	0.05	—	0.07			
Background (data)	0.05	0.04	0.06			
Color reconnection	0.04	0.08	0.03			
Underlying event	0.04	0.03	0.05			
g-JES	0.03	0.02	0.04			
Background (MC)	0.03	0.07	0.01			
Other	0.03	0.06	0.01			
1-JES	0.03	0.01	0.05			
CMS JES 1	0.03	—	0.04			
Pileup	0.03	0.07	0.03			
JES 3	0.02	0.07	0.01			
Hadronization	0.02	0.01	0.01			
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.02	0.04	0.01			
PDF	0.02	0.06	< 0.01			
Trigger	0.01	0.01	0.01			
Total systematic	0.30	0.41	0.39			
Statistical	0.14	0.25	0.14			
Total	0.33	0.48	0.42			

Jet substructur

Ratio of energy correlation functions, D₂ targets jets with two-body structure:

$$D_{2} = \frac{\text{ECF}(3) \text{ ECF}(1)^{3}}{\text{ECF}(2)^{3}}$$
$$\text{ECF}(N) = \sum_{i_{1} < i_{2} < \dots < i_{N} \in J} \left(\prod_{a=1}^{N} p_{\text{T},i_{a}}\right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^{N} \Delta R(i_{b}, i_{c})\right)$$
$$\underline{\text{arXiv:1305.0007}}$$

N-subjettiness measures degree to which jet is compatible with comprising N or fewer subjets:

$$\tau_{32} \equiv \tau_3 / \tau_2$$

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T},k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

with $d_0 = \sum_k p_{\mathrm{T},k} R_0$.
JHEP 1103:015 (2011)

