Revisiting the Flavor Puzzle

AG, Thomsen; <u>2309.11547</u> Antusch, AG, Stefanek, Thomsen; <u>2311.09288</u>

Admir Greljo

06.03.2024, La Thuile

The Flavour Puzzle \widehat{Y}_{f} Empirical 1 $V_{ m ckm} \sim$ 0.2^{3} 0.2 0.2 0.2² 0.100 - 0.2^3 0.2^2 10^{-2} 0.001 S 10^{-4} 10^{-5} 10^{-6} 1.2 0.8 1.4 1.0 $\mu = 10^3 \,\mathrm{TeV}$

A unifying picture of flavor...

... generate **hierarchies** in the charged sector while keeping neutrinos **anarchic**

A unifying picture of flavor...

... generate hierarchies in the charged sector while keeping neutrinos anarchic

Approximate global U(2)

Barbieri et al; hep-ph/9512388, hep-ph/ 9605224, hep-ph/9610449, ...

Our revision: Antusch, AG, Stefanek, Thomsen; <u>2311.09288</u>

Exact symmetry limit

 $m_3 \gg m_2 > 0, m_1 = 0$

$U(2)_L$: Singular value decomposition

 $Y \equiv L_f \hat{Y} R_f^{\dagger}$

$U(2)_L$: Singular value decomposition

 $Y \equiv L_f \hat{Y} R_f^{\dagger}$

$U(2)_L$: Singular value decomposition

$$\mathbf{Y} \equiv \mathbf{L}_{f} \, \hat{\mathbf{Y}} \, \mathbf{R}_{f}^{\dagger}$$

Perturbative diagonalisation: $\mathbf{Y}^{(1)} = \mathbf{L}_{f}^{(0)} \, \hat{\mathbf{Y}} \, \mathbf{R}_{f}^{(1)\dagger}$ $\hat{\mathbf{Y}} \sim \begin{bmatrix} b & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{L}_{f}^{(0)} \sim \begin{bmatrix} 1 & b/a & b \\ & 1 & a \\ & & 1 \end{bmatrix}$

How can this be applied to the SM flavor puzzle?

Impose $\mathrm{U}(2)_q$:

$$\begin{pmatrix} q_L^1 \\ q_L^2 \end{pmatrix} \sim \mathbf{2}_{+1}$$

all other singlets

- Both $\hat{\mathbf{Y}}_u$ and $\hat{\mathbf{Y}}_d$ hierarchical
- $V_{\text{CKM}} \approx L_u^{(0)\dagger} L_d^{(0)}$ hierarchical

Imposing $U(2)_q \implies$ $U(2)_u \times U(2)_d$ is accidental at dim-4

Impose $\mathrm{U}(2)_q$:

$$\begin{pmatrix} q_L^1 \\ q_L^2 \end{pmatrix} \sim \mathbf{2}_{+1}$$

all other singlets

- Both $\hat{\mathbf{Y}}_u$ and $\hat{\mathbf{Y}}_d$ hierarchical
- $V_{\text{CKM}} \approx L_u^{(0)\dagger} L_d^{(0)}$ hierarchical

Imposing $U(2)_q \implies$ $U(2)_u \times U(2)_d$ is accidental at dim-4

Leptons

Impose $U(2)_e$:

$$\begin{pmatrix} e_{R}^{1} \\ e_{R}^{2} \end{pmatrix} \sim \mathbf{2}_{+1}$$

all other singlets

- Hierarchical $\hat{\mathbf{Y}}_{e}$ and $L_{l}^{(0)} \sim \mathcal{O}(1)$.
- <u>No selection rules</u> on the dim-5 Weinberg operator! PMNS ~ $\mathcal{O}(1)$

A single U(2) to rule them all? $U(2)_{q+e}$

U(2) is Right for Leptons and Left for Quarks

Stefan Antusch, Admir Greljo, Ben A. Stefanek, Anders Eller Thomsen (Nov 15, 2023) e-Print: 2311.09288 [hep-ph]

• Nine hierarchies in terms of two small parameters:

Refining the picture

- What about y_b , $y_\tau \sim 10^{-2}$?
- dⁱ & eⁱ spectrum seems
 compressed compared with uⁱ.

$$\mathrm{U}(2)_{q+e^c+u^c}$$

• Up-quarks also charged under the U(2):

$$Y_{u} = \begin{pmatrix} z_{u1}b^{2} & z_{u2}ab & z_{u3}b \\ y_{u1}ab & y_{u2}a^{2} & y_{u3}a \\ x_{u1}b & x_{u2}a & x_{u3} \end{pmatrix}$$

• Double **suppression** in the up-quark spectrum!

• 2HDM-II $\tan^{-1}\beta$ (SUSY?) $\langle H_u \rangle \gg \langle H_d \rangle$

 $\mathrm{U}(2)_{a+e^c+u^c} imes \mathbb{Z}_2$

Fixing three spurions,

$(V_Z, \boldsymbol{a}, \boldsymbol{b}) = (0.01, 0.03, 0.002)$

predicts the order of magnitudes for all flavor parameters (neutrinos++). Fit of $\mathcal{O}(1)$ parameters:

 $\begin{aligned} z_{\ell 1} &= 0.14 & y_{\ell 2} = 2.0 & x_{\ell 3} = 1.0 \\ z_{u 1} &= 1.1 & y_{u 2} = 2.5 & x_{u 3} = 0.67 \quad (A9) \\ z_{d 1} &= 0.50 & y_{d 2} = 0.66 & x_{d 3} = 1.0 \\ z_{d 2} &= 2.2e^{i\alpha} & z_{d 3} = 1.8e^{i(\beta - 1.2)} & y_{d 3} = 1.3e^{i(\beta - \alpha)} \end{aligned}$

 $\mathrm{U}(2)_{q+e^c+u^c} imes \mathbb{Z}_2$

Q: Why do q, u, e feel U(2) flavor but l, d don't?

A: SU(5) GUT...

$$egin{array}{lll} \overline{f 5} o (ar{3},1)_{rac{1}{3}} \oplus (1,2)_{-rac{1}{2}} & {
m d}^{\sf c} \; {
m and} \; \ell \ {f 10} o (3,2)_{rac{1}{6}} \oplus (ar{3},1)_{-rac{2}{3}} \oplus (1,1)_1 & q, {
m u}^{\sf c} \; {
m and} \; {
m e}^{\sf c} \end{array}$$

$$U(2)_{10} \equiv U(2)_{q+e^{c}+u^{c}}$$

The UV origin of approximate U(2)

The UV origin of $U(2) \label{eq:UV}$

• Gauge the SU(2) part!

 $SU(2)_{q+l}$

anomaly-free

AG, Thomsen; 2309.11547

*Neutrinos need an elaborate structure

 $SU(2)_{q+e}$

anomalons

Antusch, AG, Stefanek, Thomsen; <u>2311.09288</u>

 $SU(2)_{q+e^c+u^c}$ anomaly-free

wip

 $SM \times SU(2)_{q+l}$ gauged

• The SM-singlet scalar $\Phi \sim 2$ of flavor:

$$\langle \Phi^{\alpha} \rangle = \begin{pmatrix} 0 \\ v_{\Phi} \end{pmatrix}$$

$$\widetilde{\Phi}^{\alpha} = \varepsilon^{\alpha\beta} \Phi^*_{\beta}$$

*2nd family

* I st family

AG, Thomsen; <u>2309.11547</u>

Gauged flavor

AG, Thomsen; <u>2309.11547</u>

Gauged flavor

 $16\pi^{2}$

AG, Thomsen; 2309.11547

Phenomenology

FIG. 1. Comparative constraints on SMEFT operators from flavor and CP violation: Minimally-broken $U(2)_{q+e}$ (Blue), MFV (Green), Flavor Anarchy (Red). Here, Q = q, u, d and $L = \ell, e$. See Section 3 for details.

- SMEFT as a proxy for short-distance physics: $U(2) \Longrightarrow$ selection rules.
- A pattern of deviations emerges; distinct from MFV and anarchy.
- Determine the chirality of operators to test it!

Conclusions

• An approximate $U(2)_{q+e}$ (or $U(2)_{q+e^c+u^c}$) flavor symmetry: \implies hierarchies in the charged fermion sector (masses + CKM) while simultaneously large (anarchic) neutrino mixing.

- Gauged SU(2) flavor:
- \implies offers an elegant UV completion of the approximate U(2) paradigm

Alhambra of Granada

Thank you

https://physik.unibas.ch/en/persons/admir-greljo/ admir.greljo@unibas.ch

q

The Model

Rank 2

 \bullet

Rank I ${\color{black}\bullet}$

	Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$\mathrm{SU}(2)_{q+\ell}$		I		Field	$d \left \mathrm{SU}(3) \right $	$_{ m c} \left { m SU}(2)_{ m L} \right $	$U(1)_Y$	$ \mathrm{SU}(2)_{q+\ell} $		
	$q_{ m L}^{lpha}$	3	2	1/6	2				$Q_{ m L,F}$	3	2	1/6	1		
	$\mid q_{ m L}^3$	3	2	1/6	1				$L_{ m L,F}$	1	2	-1/2	1		
	$ $ $u^p_{ m R}$	3	1	2/3	1										
	$d^p_{ m R}$	3	1	-1/3	1				$c \rightarrow ($. Δ α – ~	$\widetilde{a}^{\alpha} = 0$	- (π α	$(-\widetilde{\alpha} \widetilde{\alpha} \alpha) \overline{\alpha}$	r	
	$\ell_{\rm L}^{\alpha}$	1	2	-1/2	2				$\mathcal{L} \supset + (\mathcal{Y})$	$y_q \Psi + y_q$	$(\Psi_{q} \Psi_{\alpha}) q_{\alpha} Q_{\alpha}$	$+(y_{\ell}\Psi$	$+ y_{\ell} \Psi) \ell_{\alpha}$		
	$ \ell_{\rm L}^3$	1	2	-1/2	1				$-y_{u}^{\mu}$	$Q^{p}_{\mu}QHu^{p}$ –	$- y_d^p QHd^p$	$p - y_e^p Ll$	$He^p + H.c.$		
	$e_{\rm R}^p$	1	1	-1	1				$\tilde{\Delta}^{\alpha} - c^{\alpha l}$	³ ሕ* ¹	$y_{f}^{p}=ig(0,$	$y_{f2},y_{f3}\big),$	$ ilde{y}_q=0,$		
	H		2	1/2	1				$\Psi^{\mu} = \varepsilon^{\mu}$	$\Psi_{eta_{.}}$ y_{f2}	$,y_{d3},y_{e3},y_{d3}$	$_q,y_\ell, ilde y_\ell\in \mathbb{R}$	$\mathbb{R}^+_0, \qquad y_{u3} \in$	\mathbb{C}	
	Φ	1	1	0	2			Φ	Н		Φ	Н	Φ		H
$\mathcal{L} \supset -x^p_u \overline{q}^3 \widetilde{H} u^p - x^p_d \overline{q}^3 H d^p - x^p_c \overline{\ell}^3 H e^p + ext{H.c.}$;		-,	;			,
~ _	u 4	n	$a_{d} = -$	\ \	e · · π			q			q Q		l	L	e
$H^i =$	$\varepsilon^{ij}H_j^*$	x_f^p	h = (0, 0, 0)	$, x_{f3}),$	$x_{f3} \in \Bbbk$	⁶ 0			4			a	Ū	_	
			-				I								
Raple 3							$\mathcal{L} \supset - z^p_u\overline{L} u^p \widetilde{R}_u - z^p_d\overline{L} d^p \widetilde{R}_d - z^p_e\overline{Q} e^p R_u$								
								u 1	ταα		$\chi + \Pi $				
	Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$\mathrm{SU}(2)_{q+\ell}$			$-z_q q_{\alpha}$	LS^{-2}	$\ell_{\ell} \ell_{\alpha} QS$	+ H.C.	,			
	R_u 3 2 7/6 1					$V \supset (\lambda_u \Phi^lpha + { ilde\lambda}_u { ilde\Phi}^lpha) S^*_lpha R_u H^*$									
	R_d	3	2	1/6	1				()	α "	$\alpha \in C^* D$	$\tilde{J}^* + \Pi_{z}$			
	S	3	1	2/3	2				$+(\lambda_d \Psi$	$\gamma + \lambda_d \Psi$	$)S_{\alpha}R_{d}R_{d}R_{d}R_{d}R_{d}R_{d}R_{d}R_{d$	1 + n.0			
Φ	H		Φ H	Ţ	Φ	H			$z_s^p =$	$(z_{f1}, z_{f2},, z_{f2})$	z_{f3}), z_{f3}	$_{f1}, z_a, \tilde{\lambda}_a,$	$\tilde{\lambda}_d \in \mathbb{R}^+_0$.		
	i N D			D		, / ♣. D			J	ZI. Zf2	$, z_{f3}, \lambda_u, \lambda_u$	$\kappa^p_{I} \in \mathbb{C}.$	0,		
5	\mathcal{K}_u		5,227.	Λ_{d}	5,	K_u			ood	ontol $II(1$	$) = \sqrt{11}(1)$	- alobal a	ummetru		
q L					l	Q e	34		acciu		$B \neq O(1)$	L giobal s	symmetry;		

Phenomenology

- Decoupling limit exits: Take the new mass thresholds substantially heavy while keeping $v_{\Phi}/M_{Q,L}$ fixed and $M_{S,R_u,R_d} \lesssim M_{Q,L}$.
- The low-scale variant of the model is interesting for experiments.

• Finite Higgs naturalness provides another motivation for low-scale $M_{O,L}$

$$H \quad \cdots \quad \begin{pmatrix} Q \\ \\ u^p, d^p \end{pmatrix} \quad \cdots \quad H$$

- QI: What are the bounds on the new masses given the current data?
- Q2: Which observables and deviation patterns should be prioritized?

Z' effects

- SSB of $SU(2)_{q+\ell}$ produced heavy, degenerate vector triplet.
- Integrating it out:

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{1}{2v_{\Phi}^{2}} \Big[\delta^{\alpha}{}_{\delta} \delta^{\gamma}{}_{\beta} - \frac{1}{2} \delta^{\alpha}{}_{\beta} \delta^{\gamma}{}_{\delta} \Big] \Big[(\bar{q}_{\alpha} \gamma^{\mu} q^{\beta}) (\bar{q}_{\gamma} \gamma^{\mu} q^{\delta}) + 2(\bar{q}_{\alpha} \gamma^{\mu} q^{\beta}) (\bar{\ell}_{\gamma} \gamma^{\mu} \ell^{\delta}) + (\bar{\ell}_{\alpha} \gamma^{\mu} \ell^{\beta}) (\bar{\ell}_{\gamma} \gamma^{\mu} \ell^{\delta}) \Big].$$
 $\alpha, \beta, \ldots \in \{1, 2\}$

- Suppressed bounds from 4-quark and 4-lepton FCNCs Darme et al; 2307.09595 Eg. $\mathcal{L}_{\text{LEFT}} \supset -\frac{1}{4v_{\Phi}^2} A_{sd}^2 (\bar{s}_{\text{L}} \gamma_{\mu} d_{\text{L}})^2 \qquad A_{f_p f_r'} = \left[L_f^{\dagger} \operatorname{diag}(1, 1, 0) L_{f'} \right]_{pr}.$
- The strongest bounds involve 2q2l transitions:

*complementary, can not be tuned away simultaneously

$$\begin{aligned} & \mathrm{BR} \big(K_L \to \mu^{\pm} e^{\mp} \big) \\ &= 5.9 \cdot 10^{-12} \left(\frac{300 \,\mathrm{TeV}}{v_{\Phi}} \right)^4 \left| A_{se} A_{\mu d} + A_{de} A_{\mu s} \right|^2. \end{aligned}$$

$$\begin{aligned} \operatorname{CR}(\mu \operatorname{Au} \to e \operatorname{Au}) &= 2 \cdot 10^{-11} \cdot \left(\frac{300 \,\operatorname{TeV}}{v_{\Phi}}\right)^{4} \\ &\times \left|1.01 \,s_{2\ell} - 0.25 \,c_{2\ell}\right|^{2}. \end{aligned}$$

*Future MU2E and COMET will improve by an order of magnitude on the VEV

 $v_{\Phi}\gtrsim 300\,{\rm TeV}$

Leptoquark phenomenology

• The flavor structure of the LQ couplings is fixed

$$\mathcal{L} \supset -\kappa_u^p \,\overline{\ell}^3 \widetilde{R}_u u^p - \kappa_d^p \,\overline{\ell}^3 \widetilde{R}_d d^p - \kappa_e^p \,\overline{q}^3 R_u e^p + ext{H.c.}$$

• Consistency criteria on the mass spectrum from the scalar potential:

$$\begin{split} V \supset (\lambda_u \Phi^{\alpha} + \tilde{\lambda}_u \widetilde{\Phi}^{\alpha}) S^*_{\alpha} R_u H^* \\ &+ (\lambda_d \Phi^{\alpha} + \tilde{\lambda}_d \widetilde{\Phi}^{\alpha}) S^*_{\alpha} R_d \widetilde{H}^* + \text{H.c.} \end{split}$$

⁷ Consider a toy potential $V(x, y, z) = -v xyz + x^4 + y^4 + z^4$. In such a configuration all fields would develop a VEV: $\langle x \rangle = \langle y \rangle =$ $\langle z \rangle = v/4$ (up to a tetrahedral symmetry). When one of the fields gets a mass $m \ge v/2$, the minimum of the potential moves to the origin, and no symmetry breaking will occur.

- A consistent mass spectrum allows for two interesting scenarios:
 - **Flavor** Scenario I: $M_S \gtrsim v_{\Phi}$ with R_d and R_u potentially lighter,
 - **Collider** Scenario II: $M_{R_d}, M_{R_u} \gtrsim v_{\Phi}$ with S potentially lighter.

Scenario I: R_u leptoquark

• Induces chirality-enhanced dipoles at one-loop:

$$C_{e\gamma}^{pr} = -\frac{1}{16\pi^2} \frac{(L_e^{3p})^* \kappa_u^3 x_{3u} \kappa_e^r}{M_{R_u}^2} \log \frac{M_{R_u}^2}{m_t^2}$$

• The strongest bounds:

$$\begin{aligned} \mu \to e\gamma \\ |\kappa_u^3 x_{3u} \kappa_e^1| \, \frac{\left|L_e^{32}\right|}{0.1} \left(\frac{500 \,\text{TeV}}{M_{R_u}}\right)^2 \frac{\log \frac{M_{R_u}}{m_t}}{8} < 0.017 \end{aligned}$$

$$\frac{e\mathsf{EDM}}{\frac{|x_{3u}\operatorname{Im}((L_e^{31})^*\kappa_u^1\kappa_e^1)|}{10^{-3}}\left(\frac{500\operatorname{TeV}}{M_{R_u}}\right)^2\frac{\log\frac{M_{R_u}}{m_t}}{8} < 4\cdot 10^{-3}$$

 $M_{R_u}\gtrsim 500\,{
m TeV}\,$ when couplings ${\cal O}(0.3)$

Scenario I: R_d leptoquark

$$\kappa_d^2 \simeq 0.3 \qquad |\kappa_d^1| \simeq \mathcal{O}(0.01)$$

Scenario I: R_d leptoquark

$$B \text{ Physics}$$

$$B \rightarrow K\nu\nu : \mathcal{L}_{\text{SMEFT}} \supset -\frac{\kappa_d^{p*}\kappa_d^r}{2M_{R_d}^2} (\bar{\ell}^3 \gamma_\mu \ell^3) (\bar{d}^p \gamma^\mu d^r)$$

$$B_s \rightarrow \bar{B}_s : \mathcal{L}_{\text{SMEFT}} \supset -\frac{\kappa_d^{p*}\kappa_d^r \kappa_d^{s*}\kappa_d^t}{64\pi^2 M_{R_d}^2} (\bar{d}^p \gamma^\mu d^r) (\bar{d}^s \gamma^\mu d^r)$$

$$|\text{Re}(\text{Im})[(\kappa_d^{2*}\kappa_d^3)^2]| \left(\frac{5 \text{ TeV}}{M_{R_d}}\right)^2 \lesssim 0.35 (0.12)$$

- \bullet Belle II 2023 anomaly: $R_K^
 u=~2.8\pm0.8$
- Consistency with mixing implies: $M_{R_d}~\lesssim~5\,{
 m TeV}$
- Collider limits: $\gtrsim 1.5 \, TeV$

 $M_{R_d} = 5 \,\mathrm{TeV}$ $\operatorname{Im}(B_s + \bar{B}_s)$ $R_K^{\nu} \neq (2.8 \pm 0.8)$ $\mathrm{Im}(\kappa_d^{2*}\kappa_d^3)$ 0 R_K^{ν} $\operatorname{Re}(B_s)$ $\langle \bar{B}_s \rangle$ -2-1 0 2 3 1 $\operatorname{Re}(\kappa_d^{2*}\kappa_d^3)$

FIG. 6. Constraints on R_d leptoquark from $B \to K^{(*)}\nu\bar{\nu}$ decays and $B_s - \bar{B}_s$ oscillations. The leptoquark mass is set to $M_{R_d} = 5$ TeV. Shown with solid green is the latest R_K^{ν} average from Eq. (40), including the most recent Belle II measurement [86]. Solid red is for $R_{K^*}^{\nu}$ and satisfies Eq. (39). Brown and orange show the constraints from $B_s - \bar{B}_s$ oscillations, namely Eq. (45). The dashed lines show the future Belle II projections with 50 ab⁻¹ [92].

Scenario II: S leptoquark

 $M_{R_d}, M_{R_u} \gtrsim v_{\Phi}$

- No renormalisable couplings to SM fermions! $\frac{\lambda_u^* \kappa_e^p}{M_{R_u}^2} \bar{q}_3 S \Phi^{\dagger} H e^p$ and $\frac{y_e^p z_q}{M_L} \bar{q}_{\alpha} S^{\alpha} H e^p$
- Decays through the UV scale Γ 1 σ^2

 $\frac{\Gamma_S}{M_S}\approx \frac{1}{16\pi}\frac{v_{\rm\scriptscriptstyle EW}^2}{\Lambda^2}$

- Interesting collider pheno if light: LLP!
- Signatures depend on the UV scale:

A discovery of a leptoquark via a distinct signature could indirectly shed light on the scale of flavor dynamics in the deep UV.

 $M_S = 1 \,\mathrm{TeV}$

Discussion

Q: How to fit neutrinos?

Add 3 RHN and do high-scale seesaw:

$$m_{\nu_{\rm L}} \simeq -M_D M_{\rm R}^{-1} M_D^{\mathsf{T}} \simeq U^{\mathsf{T}} \widehat{m}_{\nu_{\rm L}} U$$

• The model predicts hierarchical M_D . Large PMNS require M_R to also be hierarchical to "undo" the hierarchy in M_D . :(

A possible resolution comes from a mechanism to generate anarchic Y_{ν} . To this end, we can extend the field content with a single vector-like fermion representation $N_{\rm L,R} \sim (\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{2})$. When the mass of this field is comparable to v_{Φ} , marginal interactions $\bar{\ell}_{\alpha} \tilde{H} N^{\alpha}$ and $\overline{N}_{\alpha} \tilde{\Phi}^{\alpha} \nu_{p}$ wash out the hierarchy in Y_{ν} . In this case, the required Majorana mass matrix $M_{\rm R}$ is also anarchic. This is an elegant solution, provided one accepts the coincidence of scales $M_N \sim v_{\Phi}$.

Outlook

Pati-Salam unification

• All five scalar fields of the model fit into just two irreps! $H, R_u, R_d \subseteq \Sigma_H \sim (\mathbf{15}, \mathbf{2}, 1/2, \mathbf{1})$ $\Phi, S \subseteq \Sigma_\Phi \sim (\mathbf{15}, \mathbf{1}, 0, \mathbf{2})$

 $\mathrm{SU}(4) \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{R}} \times \mathrm{SU}(2)_{q+\ell}$

• Explains why $M_Q = M_L$. They unify into a single VLF! $\Psi_{
m L,R} \sim ({f 4},\,{f 2},\,{f 0},\,{f 1})$

• Can one fit masses and mixings? Predictions from unification? wip.