CKM and CPV in charm and beauty decays at LHCb

Stefano Perazzini, on behalf of the LHCb Collaboration

lstituto Nazionale di Fisica Nucleare

La Thuile 2022 – 6th March 2024

Outline

- Introduction to CKM and CPV
- The LHCb detector
- List of most relevant/recent LHCb measurements
 - Not exhaustive list
 - $-B^0$ and B_s^0 mixing phases
 - The γ angle
 - CPV in charm
- Conclusions and outlook

The CKM matrix

- - The CKM matrix accommodates the mixing between mass and flavour eigenstates of quarks that arises from the electroweak symmetry breaking (Higgs mechanism)
 - Encodes the strength of quark flavour-changing transitions
 - Governs the breaking of CP symmetry in the SM

CKM metrology

- One of the most powerful tools to test the Standard Model
- The CKM matrix has only 4 parameters
 - The Unitary Triangle is highly overconstrained from many measurements
 - Unique consistency check

The LHCb detector

- LHCb is able to exploit the unique heavy-flavour factory that is the LHC
 - Very large cross section for $b\overline{b}$ and $c\overline{c}$ quark pairs
 - All kind of beauty hadrons are produced including beauty baryons and B_c^+
 - Excellent time resolution (σ_t ~ 45 fs), momentum resolution ($\delta p/p$ ~ 0.4-0.6%), PID performances (RICH, Muon, CALO)

Neutral B mixing phases

[PRL132(2024)021801, LHCb-PAPER-2023-041, PRL132(2024)051802, PRL131(2023)171802]

- Time-dependent CPV allows constraints to the UT apex to be derived from B^0 (sin2 β) and B_s^0 (ϕ_s) mixing phases
 - Measure CP phase in the interference between B-mixing and decay
 - Golden modes are $B^0 \rightarrow J/\psi K_S^0$ and $B_s^0 \rightarrow J/\psi h^+ h'^-$ since are dominated by tree-level $b \rightarrow c\bar{c}q$ transitions (No CPV in decay)
- Fundamental to identify the flavour of the B at the production → flavour tagging
 - $-\sigma_{CP}^2 \propto \varepsilon_{eff}^{-2}$ effective tagging power
 - $\varepsilon_{eff}^{LHCb} \approx 5 8\%, \varepsilon_{eff}^{BelleII} \approx 30\%$ Belle II profits from the much cleaner environment, but LHCb can exploit much larger samples

Measurement of sin2 β with $B^0 \rightarrow \psi K_S^0$

[PRL132(2024021801]

Measurement of sin2 β with $B^0 \rightarrow \psi K_S^0$

[PRL132(2024021801]

Systematic uncertainties

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
Decay-time bias model	0.0007	0.0013
FT $\Delta \epsilon_{tag}$ portability	0.0014	0.0017
FT calibration portability	0.0053	0.0001
$\Delta \Gamma_d$ uncertainty	0.0055	0.0017

Projections on uncertainties

[arXiv:1808.08865, arXiv:1808.10567]

Observable	LHCb Run1	LHCb 25/fb	LHCb 300/fb	Belle II
$S_{\psi K_s^0}$	0.04	0.011	0.003	0.005

Higher yields of LHCb will compete with better FT in Belle II

Better than previous WA

NEM

LHCb 9fb⁻

 $\cdots B^+ \rightarrow J/\psi K^{*+}$

 $B \rightarrow J/\psi K^{*+}\pi$

Random γ/π^0

Combinatorial

LHCb $9 \, \text{fb}^{-1}$

Total

 π^0 from IR

200

Combinatorial

250

 $m(\gamma\gamma)$ [MeV/ c^2]

6000

— Total

5500

B^0_s mixing phase with $B^0_s \rightarrow J/\psi K^+ K^-$

In the SM is very small and very precisely determined

 $-\phi_s=-0.0368^{+0.0006}_{-0.0009}$ CKMFitter, $\phi_s=-0.0368\pm 0.0010$ UTFit

- Unique to LHC experiments thanks to the large Lorentz boost in p-p collisions $\rightarrow \Delta t = \Delta L / \gamma \beta c$
- Golden mode is $B_s^0 \rightarrow J/\psi K^+ K^-$
 - Need angular analysis to disentangle CP-even and CP-odd contributions

- Flavour tagging calibrated with $B^+ \rightarrow J/\psi K^+$ and $B_s^0 \rightarrow D_s^- \pi^+ \Rightarrow \varepsilon_{eff} \approx 4\%$
- Decay-time resolution calibrated with prompt fake signals $\rightarrow \sigma_t \approx 42 \text{ps}$

B_s^0 mixing phase with $B_s^0 \rightarrow J/\psi K^+ K^-$

[PRL132(2024)051802]

Polarisation independent results

Parameter		Values	
ϕ_s [rad]	-0.039	± 0.022	± 0.006
$ \lambda $	1.001	± 0.011	± 0.005
$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	-0.0056	+0.0013 -0.0015	± 0.0014
$\Delta \Gamma_s [ps^{-1}]$	0.0845	± 0.0044	± 0.0024
$\Delta m_s [\mathrm{ps}^{-1}]$	17.743	± 0.033	± 0.009
$ A_{\perp} ^2$	0.2463	± 0.0023	± 0.0024
$ A_0 ^2$	0.5179	± 0.0017	± 0.0032
$\delta_{\perp} - \delta_0$ [rad]	2.903	+0.075 -0.074	± 0.048
$\delta_{\parallel} - \delta_0$ [rad]	3.146	± 0.061	± 0.052
		Stat.	Syst.

Combination with Run1

$$\phi_{s}=-0.044\pm0.020$$
 rad

$$\lambda = 0.990 \pm 0.010$$

Polarisation-dependent results are consistent with each other

B_s^0 mixing phase

B_s^0 mixing phase

$B^{0}_{(s)}$ mixing phase with penguins

- $B_s^0 → φ(K^+K^-)φ(K^+K^-)$ is a pure penguin decay → $φ_s^{s\bar{s}s} \approx 0$
 - Very nice opportunity to compare SM quantities with quantities potentially affected by NP

The γ angle [LHCb-CONF-2023-004, arXiv:2309.05514, arXiv:2401.17934, arXiv:2311.10434, arXiv:2310.04277]

The γ angle

- Very clean quantity to test the SM
 - Theoretical uncertainty on the interpretation of γ measurements is ~10⁻⁷ [Zupan & Brod 1308.5663]
- Current experimental uncertainty is < 4°
 - Thanks to the combination of many modes each with different sensitivities to γ
 - Given the current precision also CPV and mixing effects in charm decays must be taken into account
 - Knowledge of hadronic D decay parameters fundamental to improve sensitivity to γ

Time-dependent CPV with $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

- [LHCb-CONF-2023-004]
- Time-dependent CPV of this mode is sensitive to γ
 - Four decay rates, 5 CPV observables
 - ightarrow including also ϕ_s from external input the system is over constrained
- Five decay modes to reconstruct D_s^{\mp}
- Flavour tagging calibrated with $B_s^0 \rightarrow D_s^- \pi^+$ (also used for Δm_s measurement)

Time-dependent CPV with $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

[LHCb-CONF-2023-004]

- Time-dependent CPV of this mode is sensitive to $\boldsymbol{\gamma}$
 - Four decay rates, 5 CPV observables
 - \rightarrow including also ϕ_s from external input the system is over constrained A
- Five decay modes to reconstruct D_s^{\mp}
- Flavour tagging calibrated with $B_s^0 \rightarrow D_s^- \pi^+$ (also used for Δm_s measurement) $\rightarrow \varepsilon_{eff} \approx 6\%$

$$\begin{split} C_{f} = & \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} \;, \\ & \Delta^{\Gamma}_{f} = \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \;, \quad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \;, \\ & S_{f} = \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \;, \quad S_{\bar{f}} = \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} \;. \end{split}$$

γ with $B^0 \rightarrow D^0 (\rightarrow K^0_S h^+ h^-) K^{*0}$ decays [arXiv:2309.05514]

1.5

1.0

0.5

0.0

- Measure CP asymmetries in bins of $D^0 \rightarrow K_s^0 h^+ h^$ phase space
 - Binning schemes optimised to maximise sensitivity on γ
 - Most recent determinations of charm hadronic parameters from BESIII and CLEO-c [PRD101(2020)112002, PRD102(2020)052008, PRL124(2020)241802,PRD82(2010)112006

 $\gamma \text{ with } B^0_{(s)} \rightarrow D^0 K^{*0} \text{ decays}$ [arXiv:2401.17934]

- Combine measurements using 2- and 4-body decays of the D⁰ meson
 - $K^{\mp}\pi^{\pm}, K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}, \pi^{+}\pi^{-}, \pi^{+}\pi^{-}\pi^{+}\pi^{-}, K^{+}K^{-}$
 - Binned phase space for $K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}$ to optimise sensitivity on γ using latest BESIII and CLEO-c results [JHEP05(2021)164,PRD106(2022)092004,PLB747(2015)9]

With these results the tension between B^+ and B^0 determination of γ goes away

γ with $B^+ \rightarrow D^{*0} (\rightarrow D^0 \ \gamma \ /\pi^0) h^+$ decays

[arXiv:2311.10434, arXiv:2310.04277]

- Both full and partial (no γ or π^0) reconstruction of D^{*0}
 - Negligible correlation between the two samples
- Reconstruct D^0 in the $K_S^0 h^+ h^-$ final state
 - Same binned method as in slide 19

Partial reconstruction

γ with $B^+ \rightarrow D^{*0} (\rightarrow D^0 \gamma / \pi^0) h^+$ decays

[arXiv:2311.10434, arXiv:2310.04277]

- Both full and partial (no γ or π^0) reconstruction of D^{*0}
 - Negligible correlation between the two samples
- Reconstruct D^0 in the $K_S^0 h^+ h^-$ final state
 - Same binned method as in slide 19

Full reconstruction - 2D fit to disentangle contributions

Components sensitive to γ

γ with $B^+ \rightarrow D^{*0} (\rightarrow D^0 \ \gamma \ /\pi^0) h^+$ decays

[arXiv:2311.10434, arXiv:2310.04277]

- Both full and partial (no γ or π^0) reconstruction of D^{*0}
 - Negligible correlation between the two samples
- Reconstruct D^0 in the $K_S^0 h^+ h^-$ final state
 - Same binned method as in slide 19

Partial reconstruction arXiv:2311.10434	Full reconstruction arXiv:2310.04277
$\gamma = (92^{+21}_{-17})^{\circ},$	$\gamma = (69^{+13}_{-14})^{\circ},$
$r_B^{D^*K} = 0.080^{+0.022}_{-0.023},$	$r_B^{D^*K} = 0.15 \pm 0.03,$
$\delta_B^{D^*K} = (310^{+15}_{-20})^{\circ},$	$r_B^{D^*\pi} = 0.01 \pm 0.01,$
$r_B^{D^*\pi} = 0.009^{+0.005}_{-0.007},$	$\delta_B^{D^*K} = (311 \pm 14)^\circ,$
$\delta_B^{D^*\pi} = (304^{+37}_{-38})^{\circ}.$	$\delta_B^{D^*\pi} = (37 \pm 37)^\circ.$

Results are compatible between each other and with LHCb average

γ combination and prospects

- Latest LHCb combination includes many measurements
 - Frequentist approach with 173 observables and 52 parameters
 - Results shown before not yet included
 - Their inclusion will solve the previous tension between B^+ and B^0

	γ (°)	[0]
LHCb	63.8 ^{+3.5} -3.7 [°]	ł
CKMfitter	65.6 ^{+1.1} -2.7 [°]	
UTFit	65.8 ^{+2.2} -2.2 [°]	

LHCb and Belle II will compete on a similar level in the next years

LHCb-CONF-2022-003

Precise determination from BESIII of charm hadronic parameters will be fundamental to reach the ultimate precision arXiv:2103.05988, PRD101(2020) 112002

CPV in charm [arXiv:2310.19397, JHEP09(2023)129]

CPV in the charm sector

- Unique laboratory to study CPV in up-type quark decays
- CPV in charm is highly suppressed in the SM
 - Beauty loop suppressed by smallness of CKM elements:

$$CPV \propto Im \left(\frac{V_{cb}V_{bu}^*}{V_{cs}V_{su}^*}\right) \approx -6 \times 10^{-4}$$

Strange-down loops suppressed by GIM mechanism

 ${(m_s^2-m_d^2)\over m_W^2}\sim 0$ in the u-spin limit

- Theory predictions complicated by QCD effects that are large and difficult to compute
- Huge charm data sample from LHCb lead to first observation of CPV in $D^0 \rightarrow h^+h^-$ decays in 2019 [PRL122(2019)211803]
 - Great improvement in efficiency in Run2 thanks to software trigger
 - New measurements in more channels needed to unravel the mystery

Search for CPV in $D^0 o K^0_S K^\pm \pi^\mp$

[arXiv:2310.19397]

- Rich resonant structure in the Dalitz plane
- Model independent search
 - Energy test: Search for differences in the D^0 and \overline{D}^0 Dalitz plot via the distances between decays in the phase-space distributions.
 - Sensitive to ~2% CP asymmetries and 2° of phase difference

No significant difference between D^0 and \overline{D}^0 is observed (p-value > 60%)

Search for CPV in $D^0 o \pi^+\pi^-\pi^0$

[JHEP09(2023)129]

- Same method as in the previous slide
- Two different reconstruction of $\pi^0 \rightarrow \gamma \gamma$
 - The two photons make a merged cluster in the ECAL
 - The two photons make separated (resolved) clusters in the ECAL
- Sensitivity limit are at 0.5% for asymmetries and 0.5° for phase differences

No significant difference between D^0 and \overline{D}^0 is observer (p-value = 0.62 for CP-conservation)

Outlook on charm CPV

LHCb (and its upgrades) will be the biggest charm factory ever It is essential to exploit it, but that will require extreme control of experimental and theoretical systematics

Conclusions

- A lot of results are still being produced with LHCb Run1+Run2 sample
 - World leading measurements of mixing phases of neutral B mesons
 - New measurements of $B \rightarrow Dh$ decays continuously improving the constraints on the γ angle and on the UT apex
 - LHCb is still exploiting its enormous charm data sample to chase new evidences of CP violation in this sector
- No evidence of discrepancies is observed with respect to SM expectations
 - Shrinking the precision on many CPV observables will be fundamental to test the CKM paradigm to its ultimate precision
 - LHCb Upgrade I is going to start to collect data with the potential to more than double its sample in the next two years
 - Complementarity and cross-check with Belle II will be fundamental as well

BACKUP

A story full of successes

10LATION

The CKM matrix

- The CKM matrix accommodates the mixing between mass and flavour eigenstates of quarks that arises from the electroweak symmetry breaking (Higgs mechanism)
- Encodes the strength of quark flavour-changing transitions
- Governs the breaking of CP symmetry in the SM

LHCb dataset

- Collected samples
 - p-p collisions for an integrated luminosity of

3.2 fb⁻¹ in Run1 + 5.9 fb⁻¹ in Run2 \rightarrow today's results

- Pb-Pb, p-Pb and fixed target collisions (p-Gas)
- LHCb Upgrade I started in 2022:
 - 2022/23 have been mostly commissioning due to VELO accident with vacuum and LHC issue in Summer 2023
 - Current plan is to collect 7+7 fb⁻¹ in 2024-25
 - More than doubling the statistics of Run1+Run2

Measurement of $\Delta\Gamma_s$

[arXiv:2310.12649]

- Measure the relative yields of $B_s^0 \rightarrow J/\psi \eta' (\rightarrow \rho^0 \gamma)$ (CP-even) and $B_s^0 \rightarrow J/\psi f_0(980) (\rightarrow \pi^+ \pi^-)$ (CP-odd) in bins of decay time
 - Extended unbinned simultaneous maximum-likelihood fit to 8 decay-time bins
 - Yield ratio in each bin is corrected for decay-time efficiency effects

$$R_{i} = \frac{N_{\rm L}}{N_{\rm H}} \propto \frac{\left[e^{-\Gamma_{s}t(1+y)}\right]_{t_{1}}^{t_{2}}}{\left[e^{-\Gamma_{s}t(1-y)}\right]_{t_{1}}^{t_{2}}} \cdot \frac{(1-y)}{(1+y)}$$
$$y = \Delta\Gamma_{s}/2\Gamma_{s}$$

Measurement of $\Delta\Gamma_s$

[arXiv:2310.12649]

• Measure the relative yields of $B_s^0 \rightarrow J/\psi \eta' (\rightarrow \rho^0 \gamma)$ (CP-even) and $B_s^0 \rightarrow J/\psi f_0(980) (\rightarrow \pi^+ \pi^-)$ (CP-odd) in bins of decay time

Source	Value $[ns^{-1}]$
Simulation sample size	4.6
Acceptance model	3.0
Bin centre method	0.3
$C\!P$ violation	0.1
Γ_s	0.1
$J/\psi\eta'$ background model	6.9
$J/\psi \pi^+\pi^-$ background model	0.8
Total	8.9

γ with $B^+ \rightarrow D^{*0} (\rightarrow D^0 \gamma / \pi^0) h^+$ decays

[arXiv:2311.10434, arXiv:2310.04277]

- Both full and partial (no γ or π^0) reconstruction of D^{*0}
 - Negligible correlation between the two samples
- Reconstruct D^0 in the $K_S^0 h^+ h^-$ final state
 - Same binned method as in slide 19

Full reconstruction - 2D fit to disentangle contributions

Components sensitive to γ

Search for CP violation in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ decays with the energy test [PLB 740 (2015) 158–167]

 Model independent Dalitz Plot analysis to look for CPV

Examples from simulation

introducing 1° CPV phase in ρ^+ resonance

