## Summary of flavor results by ATLAS and CMS

### Radek Novotný on behalf of the ATLAS and CMS collaborations

La Thuile 2024, La Thuile March 5, 2024





This talk will cover the following analyses:

- Search for the lepton flavor violating  $\tau \rightarrow 3\mu$  decay in pp collisions at  $\sqrt{s} = 13 \text{ TeV} \dots \text{CMS-BPH-21-005}$
- Test of lepton flavor universality violation in semileptonic  $B_c^+$  meson decays ......CMS-PAS-BPH-22-012
- Test of lepton flavor universality in  $B^{\pm} \rightarrow K^{\pm} l^+ l^-$  decays .....CMS-BPH-22-005
- Measurement of the  $B_s^0 \rightarrow \mu\mu$  effective lifetime with the ATLAS Detector .....ATLAS-BPHY-2020-07
- Measurement of the production cross-section of  $J/\psi$  and  $\psi(2S)$  mesons in pp collisions at  $\sqrt{s} = 13$  TeV ATLAS-BPHY-2019-08
- Observation of an excess of di-charmonium events in the four-muon final state ......ATLAS-BPHY-2022-01
- Observation of the  $\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$  decay ..... CMS-BPH-22-002



#### Lepton flavor violating in $\tau \rightarrow 3\mu$ decay (1/3) CMS-BPH-21-005

- The branching fraction of the au 
  ightarrow 3 $\mu$  decay in SM is vanishingly small (10<sup>-55</sup>)
- Some extensions of the SM predict branching fractions as high as 10<sup>-10</sup> 10<sup>-8</sup>
- Most stringent upper limit set by Belle experiment is  $\mathcal{B}(\tau \to 3\mu) < 2.1 \times 10^{-8}$  at 90% CL
- CMS experiment performed search for the  $\tau \rightarrow 3\mu$  decay, using data collected in 2017 and 2018 which corresponds to integrated luminosities 38.0 fb<sup>-1</sup> and 59.7 fb<sup>-1</sup>, respectively
- $\tau\to 3\mu$  can be studied in heavy-flavor hadron events as well as in the events associated with W boson

#### HF channel

- Events are collected by low-p<sub>T</sub> dimuon and trimuon triggers
- The normalization channel  $D_s^+ \to \phi \pi^+ \to \mu^+ \mu^- \pi^+$  is used
- Events categorized based on  $\sigma_m/m$  and labeled as A, B and C





#### Lepton flavor violating in $\tau \rightarrow 3\mu$ decay (2/3) CMS-BPH-21-005

- The candidate extraction is based on BDT:
  - signal mixture of D and B meson decays MC simulations
  - background data mass-sideband regions
- The lowest score is discarded
- Figure with background only fit (blue) and projected signal at  $\mathcal{B}(\tau \rightarrow 3\mu) = 10^{-7} (\text{red})$

#### W channel

- $W^+ 
  ightarrow au^+ 
  u_ au 
  ightarrow \mu^+ \mu^- \mu^+ 
  u_ au$  topology
- Muon  $\rho_{\rm T}$  are relatively high and the trigger decisions are based on single muon triggers
- The candidate selections were optimized using the BDT trained on simulated events
- Event categorization is done in the same way as in the HF case





#### Lepton flavor violating in $\tau \rightarrow 3\mu$ decay (3/3) CMS-BPH-21-005

• Upper limits on  $\mathcal{B}(\tau \to 3\mu)$  are determined using a frequentist method based on a modified profile likelihood test statistic and the  $CL_s$  criterion

- Results observed (expected) at 90% CL:
  - HF:  $\mathcal{B}( au o 3\mu) < 3.4(3.6) imes 10^{-8}$
  - W:  $\mathcal{B}( au o 3\mu) < 8.0(5.6) imes 10^{-8}$
  - HF+W:  $\mathcal{B}(\tau \to 3\mu) < 3.1(2.7) \times 10^{-8}$
- Combination with result from 2016 data:
  - HF+W :  $\mathcal{B}(\tau \to 3\mu) < 2.9(2.4) \times 10^{-8}$
- The most stringent limit from a hadron collider experiment





### LFU violation in semileptonic $B_c^+$ meson decays (1/2) CMS-PAS-BPH-22-012

- Lepton flavor universality (LFU) can be violated in several beyond-the-SM (BSM) models
- In recent years, the  $b \to c\tau \nu_{\tau}$  quark transition has been studied by looking at the  $R(D^*) = \frac{B^0 \to D^{*-} \tau^+ \nu_{\tau}}{B^0 \to D^{*-} \mu^+ \nu_{\mu}}$
- LFU violation in semileptonic  $B_c^+$  meson decays is studied through the ratio  $R(J/\psi) = \frac{B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau}}{B_c^+ \rightarrow J/\psi u^+ \nu_{\tau}}$
- The measurement uses data from pp collisions collected by the CMS experiment at 13 TeV with integrated luminosity of 59.7 fb<sup>-1</sup>
- The  $\tau$  is reconstructed in  $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$  decays which result in identical visible final states for both channels
- A binned maximum likelihood fit is performed to the  $q^2$  and the  $L_{xy}/\sigma_{L_{xy}}$  distributions



Summary of flavor results by ATLAS and CMS, March 5, 2024



#### LFU violation in semileptonic $B_c^+$ meson decays (2/2) CMS-PAS-BPH-22-012

- The measured branching fraction ratio is  $R(J/\psi) = 0.17^{+0.18}_{-0.17}(\text{stat.})^{+0.21}_{-0.22}(\text{syst.})^{+0.19}_{-0.18}(\text{theo.})$ , where the statistical, experimental systematic and form-factor uncertainties, labeled as theoretical, are reported separately
- This result agrees within 0.3 standard deviations with the value 0.2582(38) predicted by the SM
- Also in agreement within 1.3 standard deviations with the previous measurement performed at LHCb<sup>1</sup>





#### LFU in $B^{\pm} \rightarrow K^{\pm} l^+ l^-$ decays (1/3) CMS-BPH-22-005

- Measurements in  $B^{\pm} \to K^{\pm} l^+ l^-$  tests LVU in the  $\bar{b} \to \bar{s} l^+ l^-$  transition
- The branching ratio  $R(K) = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$  is expected to be equal to unity in the SM
- CMS measured this ratio with data collected in 2018 with a new trigger strategy, "B parking"<sup>1</sup>, which enables collection of order 10<sup>10</sup> unbiased b hadron decays
- R(K) is measured as a double ratio normalized to the corresponding  $B^+ o J/\psi K^+$  decay
- For electron reconstruction a combination of the particle-flow (PF) and low- $p_T$  (LP) algorithms are used
- The final selection is based on a BDT, which combines several variables into a classifier built using the XGBOOST package





#### LFU in $B^{\pm} \rightarrow K^{\pm} l^+ l^-$ decays (2/3) CMS-BPH-22-005

- The R (K) ratio is measured in the low-q<sup>2</sup> region from 1.1 to 6.0 GeV<sup>2</sup>
- Analysis uses also two control regions (CR):
  - $J/\psi$  CR: 8.41  $< q^2 < 10.24$  GeV
  - ψ(2S) CR: 12.6 < q<sup>2</sup> < 14.44 GeV (which is the secondary normalization channel) and also for additional cross-checks with R<sub>ψ(2S)</sub> ratio defined as:

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to \psi(2S)(\mu^+\mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\mu^+\mu^-)K^+)} \frac{\mathcal{B}(B^+ \to \psi(2S)(e^+e^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(e^+e^-)K^+)}$$

In each channel, the B<sup>+</sup> → K<sup>+</sup>I<sup>+</sup>I<sup>-</sup> signal yield is extracted from an unbinned maximum likelihood fit to the invariant mass spectrum.





#### LFU in $B^{\pm} \rightarrow K^{\pm} I^+ I^-$ decays (3/3)

#### CMS-BPH-22-005



• A profile likelihood is used to obtain the confidence interval of the parameter of interest, *R*(*K*)<sup>-1</sup>





- The differential  $B^+ \to K^+ \mu^+ \mu^-$  branching fraction was compared to the theoretical predictions using HEPFIT, SUPERISO, FLAVIO, and EOS packages
- Integrated B<sup>+</sup> → K<sup>+</sup>µ<sup>+</sup>µ<sup>-</sup> over specified q<sup>2</sup> region is measured to be: B<sup>+</sup> → K<sup>+</sup>µ<sup>+</sup>µ<sup>-</sup>[1.1, 6.0]GeV = (12.42±0.54(stat.)±0.40(syst.))×10<sup>-8</sup> = (12.42±0.68)×10<sup>-8</sup>
- This result is consistent with world average value



#### Measurement of the $B^0_s ightarrow \mu\mu$ Effective Lifetime (1/2) ATLAS-BPHY-2020-07

- SM predicts only CP-odd heavy-mass eigenstate in  $B^0_s \bar{B}^0_s$  pair decay
- Some BSM models can potentially perturb the effective lifetime in  ${\it B}^0_s 
  ightarrow \mu\mu$  decays
- The effective lifetime in  $B^0_s 
  ightarrow \mu \mu$  is defined as:

$$\tau_{\mu\mu} = \frac{\int_0^\infty t \Gamma(B_s^0(t) \to \mu\mu) dt}{\int_0^\infty \Gamma(B_s^0(t) \to \mu\mu) dt}$$

- Experimental average of the  $B_s^0 \bar{B}_s^0$  lifetimes and their difference yields prediction  $\tau_{\mu\mu}^{SM} = (1.624 \pm 0.009) \, \text{ps}$
- ATLAS used data recorded in 2015 and 2016 at LHC
- The final event selection is simplified from multiple BDT output categories to a single one
- Invariant mass distribution was fitted by the unbinned maximum likelihood fit where the background model includes same-side same-vertex (SSSV) component
- Fit yields 58  $\pm$  13(stat.)  $B_s^0 \rightarrow \mu\mu$  signal events





# Measurement of the $B_s^0 \rightarrow \mu\mu$ Effective Lifetime (2/2)

- The proper decay time of the signal candidates was extracted by the *sPlot* technique, where the signal and background yields are extracted from the invariant mass fit
- The lifetime is obtained by minimizing the binned  $\chi^2$  between data histogram and lifetime dependent pure signal MC template
- The statistical uncertainty is derived from Neyman CL band construction that results in  $\tau_{\mu\mu}^{OBS} = 0.99^{+0.42}_{-0.07}$  (stat only.) ps





• After accounting for all systematic effects, the effective lifetime was observed to be:  $\tau_{\mu\mu}^{OBS} = 0.99^{+0.42}_{-0.07}(\text{stat.}) \pm 0.17(\text{syst.}) \text{ ps}$ 

# THE UNIVERSITY OF NEW MEXICO. Production cross-section of $J/\psi$ and $\psi(2S)$ mesons (1/3)

- · Heavy quarkonia provide a unique insight into the nature of quantum chromodynamics (QCD)
- In high-energy hadronic collisions, charmonium states can be produced either from short-lived QCD sources ('prompt' production) or from long-lived sources – decays of beauty hadrons ('non-prompt' production)
- Any measurement can provide valuable input for NRQCD calculations for prompt production and FONLL for non-prompt production
- ATLAS performed a measurement of the differential production cross-sections of prompt and non-prompt  $J/\psi$  and  $\psi(2S)$  mesons with transverse momenta between 8 and 360 GeV and rapidity in the range |y| < 2 using data with integrated luminosity of 140 fb<sup>-1</sup>



### THE UNIVERSITY OF Production cross-section of $J/\psi$ and $\psi(2S)$ mesons (2/3) ATLAS-BPHY-2019-08

- The measured double-differential cross-sections assuming nominal isotropic spin-alignment scenario are presented
- The other result is non-prompt production fraction of  $J/\psi$  and  $\psi$ (2S) mesons
- The  $\psi(2S)$ -to- $J/\psi$  production ratio for the prompt and non-prompt production mechanisms was also measured



# THE UNIVERSITY OF NEW MEXICO. Production cross-section of $J/\psi$ and $\psi(2S)$ mesons (3/3)

- The results were compared with several calculations
- Although "fair agreement" is generally true, there is definitely room for improvement in the prompt production
  predictions
- pT spectrum is noticeably harder in all predictions than in data for prompt production





#### Di-charmonium studies in the $4\mu$ final state(1/2) ATLAS-BPHY-2022-01

- The exotic hadrons composed of four (*qqqqq̃*) or five (*qqqqq̃*) quarks are allowed under color confinement in the SM
- First observed candidate was *X*(3872) in 2003, and many other candidates were studied since then
- In 2020, LHCb observed a narrow structure X(6900) in the di- $J/\psi$  channel
- Since the energy is above the  $J/\psi + \psi(2S)$  mass threshold, structure in  $J/\psi + \psi(2S)$  is also possible
  - ATLAS performed a search in the  $4\mu$  final state using 140 fb<sup>-1</sup> of *pp* collisions
  - For the signal, two models are used
    - A uses three interfering S-wave Breit-Wigner resonances
    - B considers two resonances. First interferes with SPS background while second is standalone
  - Models A and B are analogous to models I and II of the LHCb study
  - J/ψ + ψ(2S) also considers two models α and β, where α is analogous to A with additional standalone resonance and β assumes single resonance
  - For model  $\alpha$  parameters of the first three resonances are fixed to their values from di- $J/\psi$  fit
  - In di- $J/\psi$  channel, feed-down needs to be accounted

Summary of flavor results by ATLAS and CMS, March 5, 2024





## Di-charmonium studies in the 4 $\mu$ final state(2/2)

di-*I/m* 

mo

Γa

 $m_1$ 

 $\Gamma_1$ 

ma

 $\Gamma_2$ 

 $\Delta s/s$ 

 $J/\psi + \psi(2S)$ 

m3

 $\Gamma_2$ 

 $\Delta s/s$ 

ATLAS-BPHY-2022-01

model B

 $6.65 \pm 0.02^{+0.03}_{-0.02}$ 

 $0.44 \pm 0.05^{+0.06}$ 

 $6.91 \pm 0.01 \pm 0.01$ 

 $0.15 \pm 0.03 \pm 0.01$ 

model  $\beta$ 

 $6.96 \pm 0.05 \pm 0.03$ 

 $0.51 \pm 0.17^{+0.11}_{-0.10}$ 

 $\pm 20\% \pm 12\%$ 

model A

 $6.41 \pm 0.08^{+0.08}_{-0.02}$ 

 $0.59 \pm 0.35^{+0.12}_{-0.20}$ 

 $6.63 \pm 0.05^{+0.08}_{-0.01}$ 

 $0.35 \pm 0.11^{+0.11}$ 

 $6.86 \pm 0.03^{+0.01}_{-0.02}$ 

 $0.11 \pm 0.05^{+0.02}_{-0.01}$ 

 $\pm 5.1\%^{+8.1\%}_{-8.9\%}$ 

model  $\alpha$ 

 $7.22 \pm 0.03^{+0.01}_{-0.04}$ 

 $0.09 \pm 0.06^{+0.06}_{-0.05}$ 

±21%+25%

Sig + Bkg

Signa

- Data

- Background

m, [GeV]

- In di- $J/\psi$  channel, the significance of all resonances far exceeds  $5\sigma$
- However, the broad structure at the lower mass could result from other physical effects such as feed-down from other resonances
- The mass of the third resonance,  $m_2$ , is consistent with the LHCb mass
- This decay channel was also studied by the CMS experiment<sup>1</sup>, where the resonances *X*(6600) and *X*(6900) were measured with significance above  $5\sigma$  and the third peak at *X*(7300) with 4.1 $\sigma$
- In  $J/\psi + \psi(2S)$ , significance of model  $\alpha(\beta)$  is 4.7 $\sigma(4.3\sigma)$





Summary of flavor results by ATLAS and CMS, March 5, 2024



- Multibody decays of beauty hadrons present a rich laboratory to search for intermediate resonances in the decay products
- LHCb reported various exotic states in  $\Lambda^0_b \rightarrow J/\psi p K^-$ ,  $\Xi^-_b \rightarrow J/\psi \Lambda K^-$ ,  $B^0_s \rightarrow J/\psi p \bar{b}$  and  $B^- \rightarrow J/\psi \Lambda \bar{p}$  decays
- CMS performed a search for the  $\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$  decay where  $J/\psi \rightarrow \mu^+ \mu^-, \Xi^- \rightarrow \Lambda \pi^-$  and  $\Lambda \rightarrow \rho \pi^-$
- The normalization channel  $\Lambda^0_b o \psi(2S)\Lambda$  is used due to similar topology
- The unbinned maximum likelihood fit results in  $N(\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+) = 46 \pm 11$  and lambda parameters in agreement with world average values
- The signal significance is evaluated using various techniques all resulting in  $>5\sigma$









Observation of the 
$$\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$$
 decay (2/2)  
CMS-BPH-22-002

- The sensitivity to potential pentaquark signals in the intermediate invariant mass distributions is limited by the low signal yield
- The background subtracted two-body invariant mass distributions do not show any narrow peaks and agree with simulation
- The branching fraction of the newly observed  $\Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$  with respect to  $\Lambda_b^0 \rightarrow \psi(2S)\Lambda$  is measured to be:

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)} = [3.38 \pm 1.02(\text{stat}) \pm 0.61(\text{syst}) \pm 0.03(\mathcal{B})]\%,$$

where the last uncertainty is related to the uncertainties in the branching fractions



### Conclusion

- There is many new results in B Physics at both the ATLAS and CMS experiments
- They are testing various aspects of the SM
- The LFU measurements and tests showing promising results, however, more data needs to be included to increase precision
- The precision measurement of B<sup>0</sup><sub>s</sub> → μμ effective lifetime probes various BSM scenarios while the measurement of production cross-sections of J/ψ and ψ(2S) is providing valuable inputs for QCD calculations
- There is also very active searches for exotic resonances and pentaquark candidates

#### Stay tuned for new results!







## Backup slides



#### Lepton flavor violating in au ightarrow 3 $\mu$ decay (4/3) CMS-BPH-21-005

• Distribution of muon reconstruction quality BDT score for the lowest- $p_T$  muon in signal MC (blue) and for simulated kaons or pions from D and B meson decays misidentified as global muons (red)



• Mass resolution categories:







LFU in  $B^{\pm} \rightarrow K^{\pm} l^+ l^-$  decays (4/3) CMS-BPH-22-005

Invariant mass plots for  $J/\psi$  and  $/\psi(2S)$  control regions



### THE UNIVERSITY OF Production cross-section of $J/\psi$ and $\psi(2S)$ mesons (4/3) ATLAS-BPHY-2019-08

