

Recent Results from FASER

Stefano Zambito, on behalf of the FASER collaboration Les Rencontres de Physique de la Vallée d'Aoste, La Thule, 4-3-2024

very forward ATLAS region (θ ~mrad)

- FASER (tracker) is operated/supervised entirely remotely by two people (no control room)
- Continuous monitoring of
 - Leakage currents
 - → LV power
 - Environmental conditions
 - → Data quality

by a remote shifter (anywhere in the world) part of the FASER operation model

periment successfully operated since then

control room), largely automatic data taking at up to 1.3 kHz d 98% data taking efficiency achieved

31/07/23

Detector Operation and Data Taking

Waveforms: Veto stations

Trigger stations

Stefano Zambito | *Université de Genève*

Preshower

Calorimeter

Physics Opportunities with FASER

Search for Dark Photons

= At LHC, mainly from rare light meson decays; O(100m) decay length for model of interest $\frac{\pi'}{\pi'}$ π'' = Almost exclusively decaying to e⁺e⁻ pairs for 1 MeV<m_{A'}<211 MeV (region accessible to FASER) A'

Stefano Zambito | *Université de Genève*

Phys. Lett. B 848 (2024) 13837

Search for Dark Photons: Backgrounds

Veto inefficiency

- Measured layer-by-layer using muon tracks =
- Completely negligible: 10⁻¹² expected out of 10⁸ muons

Non-collision background

- =
 - Cosmics if no beam + beam debris from non-colliding bunches
- No events seen with ≥ 1 track or E_{calo}>500 GeV =

Neutral hadrons

- Estimated from low-E events with 2-3 tracks + different veto =
- Suppressed by veto & E_{calo}>500 GeV: (2.2±3.1)x10⁻⁴ events =

Neutrino interactions

- "Dominant" background: estimated from Genie MC
- Suppressed by E_{calo}>500 GeV: (1.8±2.4)x10⁻³ events

ľ		_	
		-	
		_	
		_	
	_		
		_	
		_	
	_		
		_	
		-	
		_	
	_		
		_	
		_	
		-	
	_		
		_	
		_	
	_	_	
		_	
		_	
	_		
		_	
		_	
		_	
		_	
		_	
		_	
I			
١	1	Т	

Search for Dark Photons: Signal Region

of Events

Stefano Zambito | *Université de Genève*

۱0⁸ 10' 0^c 10^{-3} 10² 10 10 l 0^{−3} 🖣 10

of Events

No observed data events in <u>signal region</u>:

Event time consistent with collision bunch at IP1 No signal in veto scintillators, two good >20 GeV tracks Signal in downstream scintillators, E_{calorimeter}>500 GeV

Search for Dark Photons: Exclusion Limits

Dark photon: benchmark model

90% CL exclusions: $\epsilon \sim 4x10^{-6} - 2x10^{-4} \text{ and } m_{A'} \sim 10 \text{ MeV-80 MeV}$

Stefano Zambito | *Université de Genève*

Reinterpretation: B-L gauge boson

90% CL exclusions: $g_{B-L} \sim 3x10^{-6} - 4x10^{-5} \text{ and } m_{A'} \sim 10 \text{ MeV} - 50 \text{ MeV}$

Search for Dark Photons: Exclusion Limits

Dark photon: benchmark model

90% CL exclusions: $\epsilon \sim 4x10^{-6}\text{-}2x10^{-4}$ and $m_{A'} \sim 10$ MeV-80 MeV

Stefano Zambito | *Université de Genève*

Reinterpretation: B-L gauge boson

90% CL exclusions: $g_{B-L} \sim 3x10^{-6} - 4x10^{-5}$ and $m_{A'} \sim 10$ MeV-50 MeV

Observation of Collider Neutrino Events

Phys. Rev. Lett. 131 (2023) 031801

Collider Neutrinos: Backgrounds

Stefano

Collider Neutrinos: Results

153 events observed with 16σ significance

Expected signal: 151±41^(*) events ^(*)≈30% systematic from uncertainty in neutrino flux driven by DPMJET / SIBYLL difference

Stefano Zambito | *Université* de Genève

Run3 (4): MC expectations for 250 fb⁻¹ (680 fb⁻¹)

Collider Neutrinos: Results

153 events observed with 16σ significance

Expected signal: 151±41^(*) events (*) ≈30% systematic from uncertainty in neutrino flux driven by DPMJET / SIBYLL difference

Stefano Zambito | *Université de Genève*

Run3 (4): MC expectations for 250 fb⁻¹ (680 fb⁻¹)

GENIE histograms do not include experimental systematics

Collider Neutrinos: FASERv

Stefano Zambito | *Université de Genève*

CERN-FASER-CONF-2023-002

Collider Neutrinos: FASERv

Analysed 150 of 730 emulsion layers for 9.5 fb⁻¹ of data

Stefano Zambito | *Université de Genève*

Expected 3.0-8.6 v_{μ} CC events **Observed 4** v_{μ} vertices: 2.5 σ sign. Expected 0.6-5.2 v_e CC events **Observed 3** v_e vertices: 5 σ sign. first observation of collider $v_e!$

Future Plans?

Near Future: Upgraded Calorimeter Readout Scheme

Upgrading the calorimeter readout scheme to improve range and energy scale

- Currently relying on single PMT, and optical filter to reduce light output by factor 10
 - → Calibrations: MIP data (high PMT gain) extrapolated to low gain with LED-determined gain ratio
- → Upgrade: use two separate PMTs to cover low E (high gain) and high E (low gain) at same time

Stefano Zambito | *Université de Genève*

Light output reduced by *optical filter,* otherwise too large signal at TeV scale

Same PMT type, but operated at medium gain

 PMT 1
 High energy range PMT: 3-3000 GeV

PMT 2 Low energy range PMT: 0.1-300 GeV

 \Rightarrow 3-300 GeV overlap region for cross-calibrations

Near Future: Upgraded Calorimeter Readout Scheme

Upgrading the calorimeter readout scheme to improve range and energy scale

- Currently relying on single PMT, and optical filter to reduce light output by factor 10
 - → Calibrations: MIP data (high PMT gain) extrapolated to low gain with LED-determined gain ratio
- → Upgrade: use two separate PMTs to cover low E (high gain) and high E (low gain) at same time

Stefano Zambito | *Université de Genève*

Light output reduced by *optical filter,* otherwise too large signal at TeV scale

Same PMT type, but operated at medium gain

Installed last month, working OK: collision data needed for final commissioning

Near Future: Upgraded Preshower Detector

New preshower detector to enable multi- γ tagging and increase ALP searches' reach

- Project on schedule for installation during 2024 EYETS, to take data in 2025 and Run 4

 \triangleright Six planes of tungsten (6 X₀ in total) and monolithic SiGe pixelated sensors with ~100 μ m pitch High dynamic range for charge measurement to capture electromagnetic showers' development

Proposal [Link]: Forward Physics Facility at the LHC

FASER 2 upgrade proposed in the context of a broader Forward Physics Facility (FPF)

65 m long and 9 m wide cavern, 617-682 m west of ATLAS IP, on beam collision axis

Stefano Zambito | *Université de Genève*

= FASERv2: x20 increase in target mass - FASER2: π^0 angular acceptance increasing from 0.6% to 10%

Summary & Outlook

FASER taking data smoothly in LHC Run3, and recently approved for Run 4 operation

- Searched for dark photons in events with two electrons = Extended existing exclusions to low mass and low kinetic mixing
- **Observed** ≈150 collider neutrino interactions in spectrometer = ightarrow First direct observation of neutrinos and $v_{\rm e}$ CC interactions at collider Only a small fraction of already-collected data analysed thus far... => Further empowering FASER's capabilities with calorimeter and preshower upgrades
 - Expanding physics reach for multi-photon final states (e.g. ALPs)

... Several more years of exciting physics ahead of us!

