Studying neutrinos with the LHC beams

Scattering and Neutrino Detector at the LHC

> Simona Ilieva (CERN) on behalf of the SND@LHC collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile 2024, 3-9 March

Neutrino experiments at the LHC

Potential of observing neutrinos at the LHC recognized in the early 80s

- Large neutrino fluxes in forward region from pp collisions
- High ν energy: E $_{\nu}$ [10² 10³] GeV, $\sigma_{\!\nu}\!\!\propto\! E_{\!\nu}$
- A small-scale LHC experiment can observe neutrinos of all three types
- Probe $pp \rightarrow vX$ in an unexplored energy domain

- Two experiments presently operating
 - FASERν on-axis (η>9)
 - enhances statistics
 - SND@LHC off-axis (7.2 <η< 8.4)
 - enhances charm parentage

PRL 122 (2019) 041101

SND@LHC physics programme

- Measure charm production at high η
 - Neutrinos in the detector acceptance are mostly coming from charmed hadrons decay
 J. Phys. G: Nucl. Part. Phys. 47 125004
- v_e as a probe of forward charm quark production
 - constrain gluon PDF at very low momentum fraction (x~10⁻⁶)
- Lepton universality test: v_{τ}/v_{e} and v_{μ}/v_{e}
 - The detector is designed to distinguish all neutrino flavours
- Measurement of the NC/CC ratio
- Direct search for feebly interacting particles (FIP) through their scattering

SND@LHC TP: LHCC-P-016

Run3: 250fb ⁻¹

Flavour	Neutrinos in acceptance		CC neutrino interactions	
	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910
$\bar{\nu}_{\mu}$	133	$2.6 imes 10^{12}$	485	360
ν_e	339	$3.4 imes 10^{11}$	760	250
$\bar{\nu}_e$	363	$3.8 imes 10^{11}$	680	140
$\nu_{ au}$	415	$2.4 imes 10^{10}$	740	20
$ar{ u}_{ au}$	380	2.7×10^{10}	740	10
TOT		4.0×10^{12}		1690

- In the TI18 tunnel
 - former SPS to LEP transfer line
- ~ 480m away from ATLAS interaction point(IP1)

- Shielded by:
 - ~ 100m rock
 - LHC magnets deflecting charged particles
- Angular acceptance $7.2 < \eta < 8.4$

Machine to IP1(left) - SND@LHC in TI18(right)

Detector concept

- Hybrid detector design
- Optimized for the identification of three v flavours and feebly interacting particles.

• Veto system

- 2+1 (installed in 2024) planes of stacked scintillator
- bars

tag charged particles entering the detector volume

• Vertex detector + ECal

- Emulsion Cloud Chambers(emulsion/W)
 - neutrino target mass ~830kg
- ECC alternated with Scintillating fiber planes

• HCal + MUON ID SYSTEM

- 5+3 plastic scintillator planes interchanged with 20-cm-thick iron walls
- Last 3 planes (**D**ownstream **S**tations) have finer granularity to track muons

arXiv:2210.02784

5

Neutrino interaction identification

0.3 mm

Emulsion film

192x192 mm²

W plate

192x192 mm²

First phase (online, electronic detectors)

- Identify signal candidates (neutrino or FIPs) 0
- Tag muon tracks (muon system) 0
- Measure showers with the Ecal and HCal 0

Second phase (offline, emulsion) 0

- Micrometric resolution for precise 0 neutrino vertex reconstruction
- No timing information emulsions 0 integrate signal over a few months to a maximum of 20 fb⁻¹
- Limited energy measurement 0
- Must be complemented with a 0 matched electronic detector event

Observation of collider muon neutrinos with the SND@LHC experiment

PRL 131, 031802(2023)

Search for $\nu_{\!_{\mu}}$ Charged Current Deep Inelastic Scattering events in the electronic detector data

- Analysis of the 2022 dataset
 - corresponding to 36.8 fb⁻¹
- Expected signal: 157 ± 37
- Background from ~10⁹ muons

- Select high-purity sample of candidate events
 - counting-based approach
- Maximize signal/background ratio
 - strong rejection power needed

Observation of v_{μ} using electronic detectors

PRL 131, 031802(2023)

Fiducial volume cut

- Detector activity starts in the 3rd or 4th target wall
 - consistent with a neutral particle interaction
 - probing the v_{μ} -induced shower already in SciFi
- Reject side-entering backgrounds
- Signal acceptance: 7.5%

Muon neutrino interaction ID

- Large hadronic activity in SciFi and HCal
- One muon track associated to the vertex
- Hit time consistent with an event originating from the IP1 direction
- Signal selection efficiency: 36%

Number of v_{μ} CC events expected in 36.8 fb⁻¹ after cuts: 4.2

Background control: Muon flux measurement

Eur.Phys.J.C 84 (2024)

- A dedicated muon flux measurement using SciFi tracker and the Downstream Stations of the muon system
 - same fiducial area of size: 31x31cm²

SciFi: 2.06± 0.01(stat.) ± 0.12(sys.) ×10⁴ cm⁻²/fb⁻¹

DS: 2.02 ± 0.01(stat.) ± 0.08(sys.) ×10⁴ cm⁻²/fb⁻¹

• Control comparison with emulsion data shows good agreement too

• Data/MC simulation agreement level 20-25%

Background assessment

PRL 131, 031802(2023)

- Muons reaching the detector location
 - Not vetoed, generate showers(bremsstrahlung, DIS in the detector) (a,b) using the data
 - Interact in the surrounding material to produce neutral particles which can then mimic neutrino interactions in the target (c) rely on simulations

Observation of v_{μ} using electronic detectors

PRL 131, 031802(2023)

Observed 8 ν_{μ} CC candidates with a statistical significance of 6.8 σ

Ongoing searches in 2023/2024

Preliminary

• v_{μ} CC events search with 2022-2023 data in an extended target volume (walls 2 and 5 included):

32 events: 15 in 2022 and 17 in 2023

- A factor of 2 gain from analysis improvements and another 2 from inclusion of the 2023 data w.r.t. PRL result
- Seeking charged current v_{p} DIS interactions using electronic detector data and emulsion
- Emulsion vertex matching to target tracker data
- Multi-muon event analysis in both proton and ion runs

Studying neutrinos with the LHC beams

SND@LHC HL-LHC upgrade R&D

Advanced SND (AdvSND)

- Letter of intent in preparation
- Detector upgrades
 - Tag muon sign with magnet to separate v from v-bar
 - Replace emulsion vertex detector with electronic technology (Si pixels) since HL-LHC emulsion replacement rate is unfeasible

- SND@LHC detector is operating since the start of the LHC Run 3
 - has collected 36.8 fb⁻¹ in 2022 and 34fb⁻¹ in 2023
- Measurement of the muon flux in the detector
 - Validating MC simulation with 20-25%
- Observed 8 v_{μ} CC candidates with 6.8 σ significance
- Increasing the acceptance, selected 15(2022) and 17(2023) v_{μ} CC candidate events
- ν_{r} search and emulsion analysis on the way
- Planning for the future in HL-LHC era

A THE REAL FRANCE FOR A REAL PROPERTY AND A

-

Les Rencontres de Physique de la Vallée d'Aoste Studying neutrinos with the LHC beams

Experiment timeline

Scattering and Neutrino Detector at the LHC

TECHNICAL PROPOSAL

Letter of Intent

August 2020

SND@LHC

January 2021

CERN approves new LHC experiment

SND@LHC, or Scattering and Neutrino Detector at the LHC, will be the facility's ninth experiment

March 2021

September 2021

December 2021

Marah 2022

Emulsion Cloud Chambers

- Goal: tracking and vertex ID
- Sub-micrometric resolution
- Geometry
 - 5 walls of 2x2 bricks
- Shielding(protect from neutrons, stabilise T and humidity)
- Brick layout
 - 60 layers of 300 µmthick emulsions
 - Interleaved by 1 mm tungsten plates
- Target mass ~830 kg

<u>SciFi</u>

Goals:

0

- Precise timing information (~350 ps time resolution)
- EM energy measurement
- Spatial information (<100 µm spatial resolution)
- Geometry
 - 5 planes of scintillating fibres mat pairs (x-y)
 - Mats built of 6 layers of staggered fibres

Les Rencontres de Physique de la Vallée d'Aoste Studying neutrinos with the LHC beams

Hadronic calorimeter

- Goals:
 - Timing information
 - Hadronic energy measurement
 - Spatial information
- Geometry
 - 5 stations of horizontal scintillation bar layers
 - Readout on both ends of a bar

Muon ID system

• Goals:

Detector components

- Timing information
- Muon tracking and isolation
- Geometry
 - 3 stations of orthogonal scintillation bar layer pairs
 - Horizontal bars read out on both ends
 - Vertical bars read out on one end (one additional layer in last station)

Muon flux

Using data from SciFi and DS, the muon flux is

- SciFi: 2.06×10⁴ cm⁻²/fb⁻¹ DS: 2.35×10⁴ cm⁻²/fb⁻¹ Eur.Phys.J.C 84 (2024)
- 2% deviation of SciFi and DS fluxes in the same acceptance range
 - while systematic error is 3%(SciFi) and 5%(DS) on muon flux per detector
- data/MC simulation agreement level 20-25%
- Comparison of Emulsions/SciFi distributions with early data in good agreement, preliminary flux measurement agree within 10%
 - Input to target replacement strategy definition

