# Dark Matter Searches with the LZ Detector

### Anna David

University College London

anna.david.20@ucl.ac.uk

5<sup>th</sup> March 2024

Les Rencontres de Physique de la Vallée d'Aoste



### **Dual-phase Xenon TPCs**





### The LZ Collaboration



- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zürich
- US Europe Asia Oceania

### 38 Institutions, 250 scientists, engineers, and technical staff



https://lz.lbl.gov/ @lzdarkmatter



#### LZ Collaboration Meeting at SURF, 2023







Thanks to our sponsors and participating institutions!

## The Sanford Underground Research Facility





LZ is located in the Davis Cavern, 1478 m underground in Lead, South Dakota

Anna David

### **The LUX-ZEPLIN Detector**





Dual-phase <u>**TPC</u>** containing 7 t active xenon</u>

- 1.5 m height and diameter
- Lined with highly-reflective PTFE
- Four grids (anode, gate, cathode, bottom)

Active veto systems:

- <u>Skin</u>
- Outer Detector (OD)
- <u>Water tank</u> containing 228 t of ultrapure water provides further shielding



### **Veto Anti-Coincidence Systems**



### Skin:

- Contains 2 t LXe
- Optically isolated
- Anti-coincidence detector for *γ* rays

### OD:

- Contains 17 t Gd-loaded liquid scintillator
- Anti-coincidence detector for γ rays and neutrons

Each detector observed by additional PMTs

#### Anna David

### **Veto Anti-Coincidence Systems**

# Ê



### Skin:

- Contains 2 t LXe
- Optically isolated
- Anti-coincidence detector for γ rays

### OD:

- Contains 17 t Gd-loaded liquid scintillator
- Anti-coincidence detector for *γ* rays and neutrons

Each detector observed by additional PMTs

#### Anna David

#### Dark Matter Searches with the LZ Detector

#### Example neutron event:



### **Veto Anti-Coincidence Systems**

# Ê



### Skin:

- Contains 2 t LXe
- Optically isolated
- Anti-coincidence detector for γ rays

OD:

- Contains 17 t Gd-loaded liquid scintillator
- Anti-coincidence detector for γ rays and neutrons

Each detector observed by additional PMTs

#### Anna David





### LZ Assembly (2018 - 2021)





Anna David

## First Science Run (SR1)





Anna David

### Calibrations





Anna David

Dark Matter Searches with the LZ Detector

11

## **Background Model**



### $\gamma$ -emitters in detector materials:

- <sup>238</sup>U chain
- <sup>232</sup>Th chain
- <sup>40</sup>K
- <sup>60</sup>Co

- Dissolved e-captures (mono-energetic x-ray/Auger cascades):
  - <sup>37</sup>Ar
  - <sup>127</sup>Xe
  - <sup>124</sup>Xe (double e-capture)

Solar neutrinos (ER):

- pr
- <sup>7</sup>Be
  <sup>13</sup>N

Anna David

ER Backgrounds

SR1 total = **276 events** +[0,291] from <sup>37</sup>Ar

### NR backgrounds:

- Neutron emission from spontaneous fission and (*α*,n)
- <sup>8</sup>B solar neutrinos
- SR1 total = **0.15 events**

### Accidental Coincidences:

- Unrelated S1 and S2 pulses classified as single scatter events
- SR1 total = **1.2 events**

### Dissolved $\beta$ -emitters:

- <sup>214</sup>Pb (<sup>222</sup>Rn daughter)
- <sup>212</sup>Pb (<sup>220</sup>Rn daughter)
- <sup>85</sup>Kr
- $^{136}$ Xe ( $2\nu\beta\beta$ )

## **Data Quality Analysis**

Analysis cuts:

- Remove time periods with instabilities and high rates
- Remove accidentals using pulse-based cuts
- Define WIMP Region of Interest and 5.5 t Fiducial Volume
- Veto events with coincident signal in Skin or OD





Anna David

## **Final SR1 Dataset**





Anna David

## **Background Fits**

| m |   |
|---|---|
|   | 7 |
|   |   |
| C |   |



#### Profile likelihood fit in $\log_{10}(S2c)$ vs S1c space

## Best fit with **zero WIMP events** at all WIMP masses

#### Anna David

### **Spin-Independent Limits**





- Two-sided PLR test statistic, power constrained to  $-1\sigma$  [1]
- No evidence for WIMPs •
- World-leading exclusion limit for • masses > 9 GeV/ $c^2$

## **Effective Field Theory Results**

arXiv:2312.02030 (2023)





 Treat WIMP-nucleon elastic scattering as four-field interaction parameterised by operators

$$\mathcal{L}_{int} = \sum_{N=n,p} \sum_{i} d_{i}^{(N)} \mathcal{O}_{i} \bar{\chi} \chi \overline{N} N$$



- Upper limit of ROI extended by a factor of 7.5
- LZ provides the strongest upper limits for all but one operator

Anna David

## **Ultraheavy Dark Matter Results**

arXiv:2402.08865 (2024



- Maximum mass probed by LZ extended to  $3.9 \times 10^{17} \text{ GeV/c}^2$
- Competitive per-nucleus limits and world-leading per-nucleon • limits

#### Dark Matter Searches with the LZ Detector

**S2** 

**S1** 

χ--

### **Low-energy ER Results**

Phys. Rev. D 108, 072006 (2023)



### **Future Prospects for LZ**

## Z

- SR1 covers only **6% of planned full exposure** of 1000 live days [1]
- Lots of parameter space still explorable with LZ
- Began a long science run in "discovery mode" with salting for bias mitigation
- **Broad range of physics** available
  - Beyond SR1: S2-only searches, <sup>8</sup>B,  $Ov\beta\beta$  [2] etc



#### Anna David

### Beyond LZ: XLZD Consortium https://xlzd.org J. Phys. G: Nucl. Part. Phys. 50 013001 (2023)

- XENON, LZ and DARWIN collaborations working towards a G3 xenon observatory
- WIMP sensitivity down to "neutrino fog"
- Plus other dark matter candidates,  $Ov\beta\beta$ , atmospheric neutrinos





Anna David

Conclusions



- World-leading spin-independent WIMP search limit set using only 6% of planned exposure
- Lots more **WIMP parameter space** and many **other physics** channels to explore with LZ
- **XLZD** consortium working towards the ultimate xenon observatory



# **Supplementary Slides**

### **Energy Response**





- S1 and S2 signal sizes corrected using <sup>131m</sup>Xe background and <sup>83m</sup>Kr calibration sources
- Means of corrected measured S1 and S2 signals plotted for sources of known energies on a **Doke plot**

$$E = W \cdot \big(\frac{S1_c}{g1} + \frac{S2_c}{g2}\big) \longrightarrow \frac{S2_c}{E} = -\big(\frac{g2}{g1}\big) \cdot \big(\frac{S1_c}{E}\big) + \frac{g2}{W}$$

W = excitation energy of 13.5 eV

## **Backgrounds: Radon**





- Non-uniform spatial distribution
- WIMP background from "naked"  $\beta$  decay of <sup>214</sup>Pb
- <sup>218</sup>Po and <sup>214</sup>Po  $\alpha$  decays used to constrain rates





#### Anna David

### Backgrounds: <sup>37</sup>Ar





Anna David

### **Backgrounds: Accidentals**





Definite Accidental Event



- Accidental coincidences of isolated S1 and S2 pulses can occur within max. drift time
- Rate: definite accidental events with drift time > max. drift time
  - Distribution: fake events from lone S1 and S2 pulses stitched together
- Analysis cuts remove with >99.5% efficiency

#### Anna David

## **Limit Shape**





- Tritium and DD calibrations showed that the deficit region was well-covered
- Skin-tagged <sup>127</sup>Xe decays near deficit region were also as expected, given the signal acceptance

→ Background under-fluctuation, rather than signal inefficiency that was unaccounted for

Downward fluctuation in observed upper limit is a result of a **deficit of** events under the <sup>37</sup>Ar contour

## **Spin-Dependent Limits**



Grey bands = theoretical uncertainty on Xe nuclear structure factor

Anna David