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Exercise 1
Let us consider axions interacting with photons. The Lagrangian is given by

L = −1
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• Derive Maxwell equations taking into account the latter interaction.
[Hint: Derive the Eulero-Lagrange equations for the photon field Aν. The second
set of Maxwell equations is given by the Bianchi identity ∂µF̃

µν = 0.]

• Express the Maxwell equations in terms of the electric and magnetic fields.
[Hint: In terms of E and B, one can write F i0 = Ei, F ij = −ϵijkBk, F̃

i0 = Bi,
F̃ ij = ϵijk Ek.
Express E = E0 +Ea and B = B0 +Ba in terms of a background contribution
(E0, B0) and an axion-induced one (Ea, Ba), then write the Maxwell equations
at first order in gaγ.]

• Define the effective polarization P and magnetization M induced by axions.
[Hint: Write ∇ ·Ea = −∇ ·P and ∇×Ba = Ėa + ∂P/∂t+∇×M.]

Exercise 2

1. Starting from the computed Maxwell equations, calculate the probability of
the photon conversion into an axion (and viceversa) in an external transverse
magnetic field B = B0 through the following steps.

• From Eq. (1) compute the equations of motion for the axion field a and
show that Fµν F̃

µν = −4Ea ·B0.

• Simplify Maxwell equations taking into account that∇ a ⊥ B0 and E0 = 0.

• Write Ba = ∇×Aa and Ea = −Ȧa and obtain the system of differential
equations {

□Aa − gaγ ȧB0 = 0

(□+m2
a) a+ gaγ Ȧ ·B0 = 0

. (2)



• Only the component of Aa parallel to B0 mixes with a, so let us fix Aa =
A∥. Assuming the propagation is in the z axis, use the plane wave ansatz
A∥, a ∼ e−i(ωt−k z) and redefine a to absorb a relative phase between A∥ and
a. Linearize the obtained system of equations using (ω2+∂2

z ) ≃ 2ω(ω+i∂z)
(what this the origin of this equation?). In this way you obtain
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• Find the eigenvalues ∆′
∥, ∆

′
a of the matrix H and diagonalize it by in-

troducing the rotation matrix R(θ) which connects interaction eigenstates
(A∥ a)T to propagation eigenstates (A′

∥ a′)T :(
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∥
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= R(θ)
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How will propagation eigenstates evolve? What about interaction eigen-
states?

• Demonstrate the following relations

1
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• For a pure initial photon state, compute the probability p(γ → a) to
produce an axion at a distance z. Analogously, compute the probability to
produce a photon p(a → γ) for an initial pure axion state.

2. Find the expression for the oscillation length Losc and show that when the
propagation length L is shorter than Losc (coherent conversions) the probability
becomes

p(γ → a) = p(a → γ) =
1

4
g2aγ B

2 L2 . (7)

[Hint: Write p(γ → a) ∝ sin2(π z/Losc).]

3. Write the probability in the limit ∆2
a ≫ ∆2.

Exercise 3
Assume that the cross section for the Primakoff process γ + p → p+ a is roughly

σ ∼
α g2aγ
8π

. (8)



• Estimate the energy loss of the Sun due to axion emission, assuming axions can
freely escape once produced. Consider the Sun as made purely of hydrogen and
assume an average temperature T = 1 keV. Express the result as a fraction
of the solar photon luminosity L⊙ = 4 × 1033 erg s−1. Note that the solar
mass is M⊙ = 2 × 1033 g. Thus, the average nuclear energy generation rate is
ϵ = L⊙/M⊙ = 2 erg g−1 s−1.

[Hint: The energy-loss rate per unit volume is Q = Γ ργ, with Γ the scattering rate of
a photon in a proton gas of number density np and ργ = π2/15T 4 the thermal photon
energy density in the solar interior. The energy-loss rate per unit mass is ϵ = Q/ρ,
with ρ the solar mass density.]

A more rigorous treatment, including screening effects in the Primakoff rate and
integrating over a realistic solar model yields

La ∼ g210 1.85× 10−3 L⊙ , (9)

similar to the simple estimate, where g10 = gaγ/(10
−10 GeV−1).

• Assuming the solar axion production cannot exceed its normal photon lumino-
sity (why?), which limit on gaγ is implied?

• Verify that for the relevant range of axion-photon couplings it is indeed true
that axions can escape freely once produced, approximating the Sun as a ho-
mogeneous body made purely of hydrogen, with mass M⊙ and radius R⊙ =
6.96× 1010 cm.

Exercise 4
Axions produced in the sun via the Primakoff effect can be detected in the laboratory
using a long and strong dipole manget (helioscope experiments). An example is the
CERN Axion Solar Telescope (CAST), which used a LHC prototype dipole magnet
(with length L = 9.26 m and a magnetic field B = 9 T) with two parallel straight
pipes with cross-sectional area A = 2 × 14.5 cm2. The magnet was mounted on a
movable platform to follow the Sun. The probability of a → γ conversion is

p(a → γ) =

(
gaγ B

sin(q L/2)

q

)2

, (10)

where q = m2
a/2E, with ma and E the axion mass and energy respectively.

• Knowing that solar axions have energy of a few keV, at which massmc
a coherence

is lost?

The number flux of solar axions at Earth produced via Primakoff effect would be

Fa = g210 3.75× 1011 cm−2 s−1 . (11)



• For ma ≪ mc
a, compute the expected number of axion-induced photon events

per hour in CAST for a coupling gaγ = 0.66× 10−10 GeV−1.

Exercise 5
In the Light-shining-through-a-wall (LSW) experiment ALPS II, 20 of the HERA
magnets with a length of 8.8 m and a magnetic field of 5.3 T were used, 10 for the
axion production region and 10 for the reconversion region each. The production
region was equipped with a Fabry-Perot (FP) cavity with a power build-up factor
βPC ∼ 5000, while the reconversion region had a FP cavity with βRC ∼ 40000. The
probability P (γ → a → γ) can be written

p(γ → a → a) =
1

16
βPC βRC (gaγ B L)4 . (12)

Knowing that a 30 W laser at 1064 nm is used, how many photons per second would
be expected for a coupling strength of gaγ = 0.2× 10−10 GeV−1?


