Tutorial

Axions: Theory, cosmology and astrophysics

Day 1

Tutor: Giuseppe Lucente
Email: giuseppe.lucente@ba.infn.it

Exercise 1

Using chiral perturbation theory in the two quark approximation, show that the leading order effective axion potential is

$$
\begin{equation*}
V(a)=-m_{\pi}^{2} f_{\pi}^{2} \sqrt{1-\frac{4 m_{u} m_{d}}{\left(m_{u}+m_{d}\right)^{2}} \sin ^{2}\left(\frac{a}{2 f_{a}}\right)} . \tag{1}
\end{equation*}
$$

Exercise 2

The QCD axion coupling to photons

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} g_{a \gamma} a F_{\mu \nu} \tilde{F}^{\mu \nu} \tag{2}
\end{equation*}
$$

has two contributions

$$
\begin{equation*}
g_{a \gamma}=\frac{\alpha}{2 \pi f_{a}}\left(\frac{E}{N}-1.92(4)\right) . \tag{3}
\end{equation*}
$$

The first one depends on the fermionic content of the specific model (and their contribution to the EM and QCD anomaly coefficients, E and N, respectively) while the second contribution is model-independent and originates from the axion mixing with neutral mesons. Using chiral perturbation theory in the two quark approximation, compute the model independent contribution as a function of the light quark masses m_{u} and m_{d}.

Exercise 3

Due to the interaction in Eq. (2) the axion can decay in two photons $a \rightarrow \gamma \gamma$. Show that in the axion rest frame the decay rate is

$$
\begin{equation*}
\Gamma_{a \rightarrow \gamma \gamma}=\frac{1}{64 \pi} g_{a \gamma}^{2} m_{a}^{3} \tag{4}
\end{equation*}
$$

Figure 1: Primakoff process

Exercise 4

The interaction in Eq. (2) may lead to the production of an axion via the Primakoff effect, which is the conversion of a photon into an axion of the same energy in presence of an external electric field $\gamma+Z e \rightarrow Z e+a$. Show that the differential cross section for this process is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{g_{a \gamma}^{2} Z^{2} \alpha}{8 \pi} \frac{|\mathbf{p} \times \mathbf{k}|^{2}}{|\mathbf{p}-\mathbf{k}|^{4}} \tag{5}
\end{equation*}
$$

where $\alpha=e^{2} / 4 \pi$ and \mathbf{p} and \mathbf{k} are the axion and photon momenta, respectively. In a plasma, the long-range Coulomb potential is cut off by screening effects, implying that the differential cross section is modified with the substitution

$$
\begin{equation*}
\frac{1}{|\mathbf{p}-\mathbf{k}|^{4}} \rightarrow \frac{1}{|\mathbf{p}-\mathbf{k}|^{4}} \frac{|\mathbf{p}-\mathbf{k}|^{2}}{\kappa_{s}^{2}+|\mathbf{p}-\mathbf{k}|^{2}} \tag{6}
\end{equation*}
$$

The screening scale κ_{s} in a non-degenerate plasma is given by the Debye-Huckel formula

$$
\begin{equation*}
\kappa_{s}^{2}=\frac{4 \pi \alpha}{T} \sum_{i} n_{i} Z_{i}^{2} \tag{7}
\end{equation*}
$$

where n_{i} is the number density of the i-th nuclear species with charge $Z_{i} e$. Taking into account this change, show that in stars the Primakoff production rate is given by

$$
\begin{equation*}
\Gamma_{\gamma \rightarrow a}=\frac{g_{a \gamma}^{2} T \kappa_{s}^{2}}{32 \pi}\left[\left(1+\frac{\kappa_{s}^{2}}{4 \omega^{2}}\right) \log \left(1+\frac{4 \omega^{2}}{\kappa_{s}^{2}}\right)-1\right] \tag{8}
\end{equation*}
$$

[Hint: To compute $d \sigma / d \Omega$ apply Feynman rules from Fig. 1, or follow the formalism in arXiv:1707.00701 [hep-ph]. The Lagrangian in Eq. (2) can be written as $\left.\mathcal{L}=g_{a \gamma} \mathbf{E}_{\text {ext }} \cdot \mathbf{B}_{\text {rad }}\right]$

