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All attempts to directly detect particle dark matter (DM) scattering on nuclei suffer from the partial or
total loss of sensitivity for DM masses in the GeV range or below. We derive novel constraints from the
inevitable existence of a subdominant, but highly energetic, component of DM generated through collisions
with cosmic rays. Subsequent scattering inside conventional DM detectors, as well as neutrino detectors
sensitive to nuclear recoils, limits the DM-nucleon scattering cross section to be below 10−31 cm2 for both
spin-independent and spin-dependent scattering of light DM.
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Introduction.—Attempts to discover nongravitational
interactions of dark matter (DM) are a global effort,
pursuing many possible avenues—perhaps as many as
there are viable microscopic models that link DM with
the rest of fundamental physics [1,2]. The simplicity of the
early Universe suggests that DM may be realized in the
form of some relic particles [3,4], remnants of the big bang,
which we denote here as χ.
Among the very few things known about the galactic

component of DM is the scale of its velocity, vχ;gal ∼ 10−3c.
The energy carried by DM particles, Eχ ∼mχv2χ;gal, can be
shared with an atomic nucleus in the process of a collision
and therefore, in principle, be detected [5]. The search for
such DM-nucleus scatterings—commonly referred to as
direct DM detection—has seen several generations of
experiments with ever-improving sensitivity. In the absence
of a credible positive signal, this has translated to conti-
nuously tightening limits. The latest results from the
XENON1T Collaboration [6] bring the sensitivity to the
cross section per nucleon below the σχ ¼ 10−46 cm2 level
for the “optimal”DMmass range,mχ ∈ 15–100 GeV. This
significantly constrains many models of weak-scale DM
(see, e.g., [7]).
Below that mass range, and especially below 1 GeV, the

direct sensitivity to DM worsens rapidly. This is because
the nuclear recoil energy becomes smaller and cannot
exceed Emax

recoil ¼ 2m2
χðvescÞ2=mA, where vesc ∼ 540 km=s

is the galactic escape velocity and mA is the nuclear mass.
If Emax

recoil is below some detector threshold Ethr, the

sensitivity completely disappears, making even cross sec-
tions parametrically larger than weak-scale cross sections
(e.g., σ ≫ 10−36 cm2) completely undetectable.
Recently, it has been realized that several physical

processes allow us to circumvent this limitation. If the
scattering on the nucleus results in the emission of a photon
or ejection of an atomic electron, e.g., the electromagnetic
fraction of the deposited energy can be larger than for
elastic nuclear recoils, improving the sensitivity for mχ in
the few 100 MeV range [8–10]. Further constraints derive
from multiple collisions of light DM. For example, inter-
actions with fast moving nuclei or electrons inside the Sun
can accelerate the DM above threshold for direct detection
[11–13]. This contribution typically does not exceed a
fraction of Oð10−5Þ times the total DM flux on Earth, but
nevertheless greatly enhances the mass reach of existing
detectors, especially for χ − e− scattering [12].
In this Letter, we consider another inevitable component

of the DM flux, with velocities much higher than vesc. It
originates from energetic galactic cosmic rays (CRs)
colliding with cold DM particles in the Milky Way halo,
creating a secondary DM component of CRs with (semi-)
relativistic momenta. This new component of the DM flux,
called CRDM throughout this Letter, will scatter again in
the detectors, but now with much greater energy available.
The goal of this Letter is to make use of this idea,
employing data from the most sensitive current direct
detection and neutrino experiments, to establish new direct
limits on DM-nucleon scattering that extend to small DM
masses (formally even to mχ → 0).
We will adopt a simple two parameter model fmχ ; σχg

without reference to a specific underlying theory. For the
DM-nucleon elastic cross section we assume for simplicity
the isospin-singlet structure, σχn ¼ σχp ≡ σχ , but will
consider both spin-dependent and spin-independent
scattering. DM models with light mχ often require
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subelectroweak-scale mediators [14,15] and, therefore, can
be amenable to additional constraints from cosmology,
colliders, neutrino, and beam dump experiments (see, e.g.,
Ref. [16] for a review). However, all such constraints are
necessarily model dependent, while constraints derived
in this Letter have greater generality. Despite invoking
DM-CR interactions, in particular, they build on the same
microscopic picture of DM-nucleon scattering as adopted
in the standard presentation of limits from conventional
direct detection experiments.
Step 1: From CR to DM fluxes.—Compared to CR

velocities, DM can be considered effectively at rest. Then,
the kinetic energy transferred to a DM particle in a single
collision is

Tχ ¼ Tmax
χ

1 − cos θ
2

;

Tmax
χ ¼ T2

i þ 2miTi

Ti þ ðmi þmχÞ2=ð2mχÞ
; ð1Þ

where θ is the center-of-mass system scattering angle and
Ti ≡ Ei −mi is the kinetic energy of the incoming CR
particle i. The (spacelike) momentum transfer in the
collision is given by Q2 ¼ 2mχTχ. For isotropic CR-DM
scattering, both Tχ and Q2 thus follow a flat distribution,
with Tχ ranging from 0 to Tmax

χ . Inverting Eq. (1) gives the
minimal incoming CR energy required to obtain a DM
recoil energy Tχ,

Tmin
i ¼

�
Tχ

2
−mi

��
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Tχ

mχ

ðmi þmχÞ2
ð2mi − TχÞ2

s �
; ð2Þ

where the þ (−) sign applies for Tχ > 2mi (Tχ < 2mi).
The local interstellar (LIS) population of CRs is well

measured and typically described by their differential
intensity dI=dR, where R is the particle’s rigidity. We
adopt parametrizations [17,18] for dIi=dRi of protons
and 4He nuclei, the two dominant CR components. The
differential CR flux (number of particles per area, kinetic
energy, and time) is then obtained as dΦ=dT ¼
4πðdR=dTÞðdI=dRÞ. For an elastic scattering cross section
σχi, the collision rate of CR particles i with energy in the
range ½Ti; Ti þ dTi� inside a volume dV thus becomes

dΓCRi→χ ¼ σχi ×
ρχ
mχ

dΦLIS
i

dTi
dTidV: ð3Þ

The resulting CR-induced DM flux is thus obtained by
dividing by 4πd2, where d is the distance to the source,
implying that the volume integration reduces to an angular
average over a line-of-sight (LOS) integral

dΦχ

dTi
¼

Z
dΩ
4π

Z
LOS

dlσχi
ρχ
mχ

dΦi

dTi
≡ σχi

ρlocalχ

mχ

dΦLIS
i

dTi
Deff :

ð4Þ

Here we introduced an effective distance Deff out to which
we take into account CRs as the source of a possible high-
velocity tail in the DM velocity distribution. The local
gradient in the DM density is relatively well constrained
[19,20], and that in the cosmic-ray density is very small [21].
Themain uncertainty inDeff thus derives from the extension
of the diffusion zone, which reaches out to at least a few
kiloparsec from the galactic disk [22–24]. Assuming a
Navarro-Frenk-White profile [25,26] for the DM distribu-
tion and a homogeneous CR distribution, e.g., performing
the full line-of-sight integration out to 1 kpc (10 kpc) results
in Deff ¼ 0.997 kpc (Deff ¼ 8.02 kpc). Using Eq. (1), we
can finally express the DM flux in terms of the DM energy
by integrating over all CR energies Ti,

dΦχ

dTχ
¼

Z
∞

0

dTi
dΦχ

dTi

1

Tmax
χ ðTiÞ

Θ½Tmax
χ ðTiÞ − Tχ �: ð5Þ

The flat distribution over recoil energies that follows
from Eq. (1) for isotropic scattering is an assumption that
we modify by the inclusion of the hadronic elastic scatter-
ing form factor in the simplest dipole form [27],

GiðQ2Þ ¼ 1=ð1þQ2=Λ2
i Þ2: ð6Þ

Here, Λi scales inversely proportional with the charge
radius and is hence smaller for heavier nuclei; for proton
(helium) scattering due to a vector current, one has Λp ≃
770 MeV (ΛHe ≃ 410 MeV) [28]). We thus relate the
scattering cross section to that in the pointlike limit by

dσχi
dΩ

¼ dσχi
dΩ

����
Q2¼0

G2
i ð2mχTχÞ: ð7Þ

Putting everything together, we expect the following
CR-induced DM flux:

dΦχ

dTχ
¼ Deff

ρlocalχ

mχ

×
X
i

σ0χiG
2
i ð2mχTχÞ

Z
∞

Tmin
i

dTi
dΦLIS

i =dTi

Tmax
χ ðTiÞ

: ð8Þ

Here, we only include i ∈ fp; 4Heg in the sum. In Fig. 1,
we plot these CRDM fluxes for various DM masses, for
spin-independent σχ ¼ σn ¼ σp. The contribution from
helium can be even larger than that from protons, but is
form-factor-suppressed at large recoil energies. The flux is
related to the 1D velocity distribution fðvÞ, more familiar
in the context of direct DM searches, as fðvÞ ¼
m2

χðρlocalχ Þ−1γ3dΦχ=dTχ . For illustration, we compare this
to the Maxwellian distribution of the standard halo model
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[29], displayed as a dashed line in the inset. As expected,
the CRDM population peaks at (semi-)relativistic velocities
and is highly subdominant at the galactic DM velocities
typically considered.
Step 2: Attenuation of CRDM flux.—Very large scatter-

ing cross sections generally constitute a blind spot for direct
DM detection, because they would lead to a significant
attenuation of the DM flux from the top of the atmosphere
to the location of the detector [30–33]. The degradation in
energy should also occur for the CRDM component, and
we can estimate the energy loss of DM particles propa-
gating through a medium as

dTDM

dx
¼ −

X
N

nN

Z
Tmax
r

0

dσχN
dTr

TrdTr: ð9Þ

Here, Tr refers to the energy lost by a CRDM particle in a
collision with nucleus N. This process, in analogy with
neutrino scattering, can be elastic, quasielastic, or inelastic.
The latter two are likely to dominate at high energies
Tχ > few 100 MeV. (In a quasielastic process, one or more
nucleons are dislodged from N, while in an inelastic
process, additional hadrons are created in the χ − N
collision.) In this Letter, we will limit ourselves to elastic
scattering, leaving a more elaborate treatment for future
considerations. Using the uniform distribution of the
nuclear recoil energy for isotropic scattering, we have
dσN=dTr ¼ σN=Tmax

r , and hence

dTχ

dx
¼−

1

2

X
N

nNσχNTmax
r ≈−

1

2mχl
ðT2

χ þ2mχTχÞ;

where l−1≡X
N

nNσχN
2mNmχ

ðmN þmχÞ2
: ð10Þ

In the last step, we have assumed Tχ ≪ mN in Eq. (1).
Integrating this equation, we can relate, very approxi-
mately, the differential DM flux at depth z to the one at
the top of the atmosphere as

dΦχ

dTz
χ
¼
�
dTχ

dTz
χ

�
dΦχ

dTχ
¼ 4m2

χez=l

ð2mχ þTz
χ −Tz

χez=lÞ2
dΦχ

dTχ
; ð11Þ

where dΦχ=dTχ needs to be evaluated at

Tχ ¼T0
χðTz

χÞ¼ 2mχTz
χez=lð2mχ þTz

χ −Tz
χez=lÞ−1: ð12Þ

For T0
χ ≪ mχ, our treatment of the energy attenuation

reduces to that previously considered in Ref. [33].
For the mean free path of the DM particles l, we use

DarkSUSY [34] to calculate the average density nN of Earth’s
11 most abundant elements between surface and depth z
(based on mass density profiles from Ref. [35]). We also
need to relate the nuclear cross sections to the one on
nucleons, σχ . For spin-independent scattering, there is the
usual coherent enhancement, leading to

σχN ¼ σSIχ A2

�
mNðmχ þmpÞ
mpðmχ þmNÞ

�
2

: ð13Þ

We neglect nuclear form factors in obtaining l. Along with
the energy-loss ansatz (9), as compared to full numerical
simulations [33], this leads to conservative limits.
Step 3: CRDM scattering in detectors.—Once a CRDM

particle reaches a detector at depth z, it can transfer (part of
its) energy to a target nucleus inside the detector. Exploiting
completely analogous formulas to the case of DM → CR
scattering discussed above, in particular, the flat distribu-
tion of the target nucleus recoil energy TN for a given DM
energy, we find the differential recoil rate per target nucleus
to be

dΓN

dTN
¼ σ0χNG

2
Nð2mNTNÞ

Z
∞

TχðTz;min
χ Þ

dTχ

Tmax
r;N ðTz

χÞ
dΦχ

dTχ
: ð14Þ

Here GNðQ2Þ is a nuclear form factor and dΦχ=dTχ is
given in Eq. (8); the quantities Tmax

r;N and Tz;min
χ follow from

Eqs. (1) and (2), by replacing χ → N and i → χ.
The broad energy distribution of CRDM particles allows

us, based on Eq. (14), to use both conventional direct
detection and neutrino experiments to set novel limits on
σχ . It is clear that for small enough σχ the overburden mass
above the detectors is transparent to CRDM, and the overall
strength of the signal hence scales as σ2χ . For large cross
sections, on the other hand, the strong attenuation of the
CRDM energy as given in Eq. (12) also leads to an
exponential suppression of the signal.
Resulting limits.—We begin by addressing constraints

from conventional direct detection experiments, which we
derive from reported limiting values for heavy DM cross

FIG. 1. Expected flux of CRDM for different DM masses
mχ ¼ 0.001, 0.01, 0.1, 1, 10 GeV (from top to bottom). Dotted
lines show the contribution from CR proton scattering alone. The
flux is directly proportional to the effective distance Deff and the
elastic scattering cross section σχ , chosen here as indicated.
(Inset) Compares the corresponding 1D velocity distributions
fðvÞ, in units where c ¼ 1, to that of the standard halo model
(SHM) (dashed line).
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sections on nucleons as a function of the DM particle mass,
σSI;limDM ðmDMÞ. Assuming a nonrelativistic DM velocity
distribution fNRðvÞ, and hence a standard DM flux of
dΦDM=dTDM ¼ m−2

DMρ
local
DM fNR, we can relate the count rate

per target nucleus N to the average heavy DM-nucleus
cross section σDMχN inside the experimentally accessible
window of recoil energies TN ∈ fT1; T2g. In the limit of
large DM masses, this gives

ΓDM
N ¼

Z
T2

T1

dTNσ
DM
χN

Z
∞

0

dTDM
dΦDM

dTDM

Θ½Tmax
N ðTDMÞ−TN �
Tmax
N ðTDMÞ

≃κ
σDMχN
mDM

ðv̄ρDMÞlocal formDM≫mN: ð15Þ

Here v̄ denotes the mean DM velocity and κ is an Oð1Þ
constant that, for a Maxwellian distribution, equals
κ ¼ exp½−2T1=ðπmNv̄2Þ� − exp½−2T2=ðπmNv̄2Þ�.
In order to constrain the CRDM component, we now

need to compare Eq. (15) with Eq. (14), taking into account
that σ0χN is evaluated for mDM ≫ mN only in the former
case. For spin-independent scattering, we can use Eq. (13)
to compute the ratio of these cross sections. Realizing that
the coherence factors for σχN are identical between ordinary
DM and CRDM scattering then allows us to recast conven-
tional limits on the scattering rate σSI;limDM per nucleon to an
equivalent limit resulting from the CRDM component

σSI;limχ ¼ κðv̄ρDMÞlocal
�
mχ þmN

mχ þmp

�
2
�
σSI;limDM

mDM

�
mDM→∞

×

�Z
T2

T1

dTN

Z
∞

TχðTz;min
χ Þ

dTχ

Tmax
r;N

dΦχ

dTχ

�
−1
: ð16Þ

For the recent Xenon 1T data ([6], Fig. 5), e.g., one has
σSI;limDM =mWIMP¼ 8.3×10−49 cm2=GeV for mχ ≳ 100 GeV,
and TXe ∈ ½4.9; 40.9� keV implies κ ≃ 0.23. The resulting
limits on σχ are shown in Fig. 2 for different assumptions
about the size of the diffusion zone (with solid lines
corresponding to an ultraconservative choice). For small
DMmasses, these limits exclude cross sections in the range
10−31 ≲ σSIχ ≲ 10−28 cm2, almost independently of mχ .
Clearly, these constraints are highly complementary to
existing limits on light DM [33,36–41]. Direct detection
of light energetic dark sector particles was also discussed
in Ref. [42].
Due to its shallow location, MiniBooNE [46] gives a

particular advantage in limiting CRDM fluxes with large
scattering cross sections that prevent χ from reaching
deeply placed experiments. We utilize the measurement
of elastic ν − p scattering [47] and a recent DM run [48]
that allows us to extract the beam-unrelated scattering rate.
Requiring the scattering rate of CRDM on protons at
MiniBooNE depth not to exceed the beam-unrelated back-
ground, we obtain (see Supplemental Material [49])

ΓpðTp > 35 MeVÞ < 1.5 × 10−32 s−1: ð17Þ

This additional exclusion region is also shown in Fig. 2.
Strong constraints on spin-dependent scattering, finally,

can be obtained from proton upscattering by CRDM in
neutrino detectors like Borexino [52]. From a search for
events with higher energy than solar neutrino scattering
[53,54], we deduce that the limiting scattering rate per
proton is (see Supplemental Material [49])

ΓpðTe > 12.5 MeVÞ < 2 × 10−39 s−1: ð18Þ

To apply this limit, we need to convert the proton recoil
energy to an apparent electron Te equivalent. For liquid
scintillators the recoil energy of the nucleus TN and the
detected energy Te are related by the empirical law

TeðTNÞ ¼
Z

TN

0

dTN

1þ kBhdTN=dxi
; ð19Þ

where kB is a material-dependent constant. Following the
procedure outlined in Ref. [55], and thus using PSTAR
tables from [56] for hdTN=dxi, we numerically tabulate and
invert Eq. (19) for pseudocumene (the scintillator used by
Borexino). The resulting constraint on spin-dependent
scattering is plotted in Fig. 3. Here the CRDM component
is produced exclusively by p − χ collisions, since 4He
nuclei do not carry spin. For the mean free path in Eq. (10),
we assumed exclusively elastic scattering on nuclei as
derived from spin-dependent couplings σχ ¼ σn ¼ σp to
nucleons (dashed and solid lines). In reality, quasielastic
scattering on nucleons would dominate for energy transfers

FIG. 2. Constraints on spin-independent DM-nucleon scatter-
ing imposed by the XENON-1T and MiniBooNE experiments.
Solid (dashed) lines assume a CR density that equals, on average,
the local value out to a distance of 1 kpc (10 kpc). We compare
our limits to those deriving from cosmic microwave background
(CMB) observations [40], gas cloud cooling [38], the x-ray
quantum calorimeter experiment (XQC) [39], and a selection of
direct detection experiments [43–45] after taking into account the
absorption of DM in soil and atmosphere [33].
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above typical nuclear binding energies. While a full treat-
ment of these processes is beyond the scope of this Letter,
we indicate for comparison (dotted lines) the limits that
would result in the extreme case of adopting a stopping
power as efficient as in the case of spin-independent
scattering [cf. Eq. (13)]. For mχ ≲ 0.5 GeV we thus find
highly competitive limits on (both spin-independent and)
spin-dependent scattering with protons, independent of the
attenuation of the CRDM flux.
Conclusions.—We have shown that the DM-nucleon

interaction cross section σχ necessarily generates a small
but very energetic component of the DM flux, the CRDM.
Subsequent scattering of CRDM in DM and neutrino
detectors leads to novel limits on σχ in the fmχ ; σχg
domains that previously were thought to be completely
inaccessible for direct detection. Our results thus comple-
ment and strengthen previous studies addressing the alter-
ation of the CR spectrum, the generation of gamma rays in
the collision of CR with DM, as well as cosmological
constraints on χ-nucleon interactions [32,37,40,60,61]. All
routines to calculate these new limits have been imple-
mented in DarkSUSY [34] and publicly released with version
6.2 of this code [62]. While our limits are generic and
derived with a minimum set of assumptions, further
refinements of the limits can be achieved within specific
models, where σχ and its energy dependence are expressed
in terms of couplings and masses of an underlying micro-
scopic model.
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Supplemental material for “Novel direct detection constraints on light dark matter”
by T. Bringmann and M. Pospelov

Counting rate in deep underground neutrino
detectors.— We focus on Borexino (a similar analysis
would apply to Kamland and SNO+), and study the
proton recoil, with some recoil energy Tp. In the
Borexino detector, Tp is quoted in terms of an equivalent
electron recoil energy Te, Te < Tp. The main text of our
Letter contains all relevant details to obtain Te(Tp).

The most relevant for our purposes are the “high-
energy” data by Borexino. These include studies of the
8B solar neutrino spectrum [1, 2], and searches of some
exotic phenomena, namely violation of Pauli statistics
and sterile neutrino decay [3, 4]. The most important
feature of the Borexino spectrum is a significant reduc-
tion of the radioactive backgrounds at higher Te. For
Te >5 MeV these backgrounds are very small and domi-
nated by solar 8B neutrinos, and above 10-12 MeV, there
are “no events” quoted in Ref. [4].

We use Ref. [4] to determine the total rate of proton
recoil with Te > 12.5 MeV. The constraint on the rate
per individual proton is given by

ΓBorexino
p (Te > 12.5 MeV) =

Slim

εNp T
< 1.9× 10−39 s−1

(1)
In this formula, Slim = 2.44 at 90% c.l., T = 1.282yr
is the data-taking period, and Np = 3.2 × 1031 is the
total number of protons. (Np is recalculated from the
number of Carbon atoms, NC = 2.37 × 1031 [4]). The
Borexino collaboration used an efficiency ε = 0.5 for the
specific search of gamma emission at E ∼16 MeV, but
this measures the efficiency of detecting a peak. Since we
are not concerned with exact energy reconstruction, we
can take ε = 1 (meaning that every recoil with Te > 12.5
MeV would be detected). Result (1) is shortened in the
main text as Eq. (18).

Shallow near surface detectors.— Shallow-site neu-
trino detectors, where the counting rates are much larger
due to large backgrounds, nevertheless can be used as a
useful limit when the penetration into ∼ km depths is
impeded by a relatively large cross section. Shallow de-
tectors include MiniBooNE that have measured out-of-
beam-pulse backgrounds consistent with p + χ → p + χ
scatterings.

To estimate the limiting counting rates we use the re-
cent MiniBooNE dark matter search (where the proton
beam is passed around the Be target to minimize the
beam neutrino background) [5]. This paper draws on the

measurement by the same collaboration of the neutral
current (NC) scattering of beam neutrinos [6].

To determine the limiting counting rate, we take the
number of beam-unrelated background events [5], and
the effective running time T given by the product of the
recorded time around the beam pulse ∆t = 19.2µsec,
times the number of bunches received, determined by the
total proton-on-target for the run, POT = 1.86 × 1020,
divided by the average number of protons per bunch
Np,bunch = 4× 1012,

ΓMiniBooNE
p (Tp > 35 MeV) =

Slim

εNp ∆t (POT/Np,bunch)
.

(2)
This way we get ∆t × (POT/Np,bunch) = 893 seconds.
Using the reported beam-unrelated background, we find
less than Slim = 800 events, i.e. the background rate is
∼ Hz. Taking the total number of free protons in the
MiniBoone inner volume to be Np = 5.83 × 1031, we
arrive at the limiting counting rate per proton as

ΓMiniBooNE
p (Tp > 35 MeV) < 1.5× 10−32 s−1. (3)

This is a conservative limit, as the (only approximately
known) cosmic ray background is not subtracted from
this counting rate. It is quoted as Eq. (17) in the main
text.

We note that the MiniBooNE counting rates are many
orders of magnitude larger than for Borexino, but they
make a difference for cross sections around 10−27cm2,
where energetic particles do not reach deep locations, but
can still penetrate the atmosphere and ∼ 3m of soil to
the MiniBooNE detector.
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