FPGAs, HLS, and Boosted Decision Trees with

~Conifer

Sionlt Summers

sioni@cern.ch
sionl.web.cern.ch

mailto:sioni@cern.ch
http://sioni.web.cern.ch

FPGAs, HLS, and Boosted Decision Trees with

/> Conifer

Section 1

Introduction

e Boosted Decision Trees (BDTs) or Decision Forests are a Machine Learning method to make predictions from data
e Conifer is a Python library for converting BDTs to FPGASs for fast inference
- Different implementations for different use cases
* |n this session we will:
- Learn how BDTs work for training and inference
- Learn three ways how BDT inference is implemented for FPGAS in conifer
- Learn how to use conifer to deploy BDTs on FPGAS
e The aim is to both learn how to use conifer, and use it to study more about HLS and FPGA implementations
* | inks, references:

- Conifer GitHub repository: https://github.com/thesps/conifer

- Conifer website (docs and downloads): https://ssummers.web.cern.ch/conifer/

- Paper: Fast Inference of Boosted Decision Irees in FPGAS for particle physics

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

https://github.com/thesps/conifer
https://ssummers.web.cern.ch/conifer/
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026

About me

e PhD in HEP from Imperial College London
e PhD Thesis: “Applications of FPGAs to triggering in particle physics”

e Recently Senior Fellow, now Applied Physicist at CERN working on Level 1 Trigger Upgrade for CMS
e \Where we want to do complicated processing very fast on FPGAs and use HLS extensively

¢ |'ve mostly worked on designing and implementing detector reconstruction algorithms for Level 1 Trigger
e [rack & vertex reconstruction, particle flow, jets

e Also using Machine Learning in the triggers on FPGAs with low latency

* hils4dml and conifer both as a developer and user

21/2/23 Low Latency Case Study - Sioni Summers

Quick ML Introduction

e Using XGBoost’s Elements of Supervised [earning Introduction

e Train a model on training data to predict target variable y from features «
e y = f(O, z) model parameters 6

e Train to find best parameters according to an objective function

o 0bj(®) = L(O) + 2(6) L oss function L, Regularization {2

e Supervised learning trains on labelled data so we can evaluate some metric of prediction quality

e £.g. mean squared error L(O) =2 (yi - i)~ where y; are our truth labels and j; are the model predictions

21/2/23 Low Latency Case Study - Sioni Summers

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Quick ML Introduction

e Using XGBoost’s Elements of Supervised [earning Introduction

e Train a model on training data to predict target variable y from features «

e A Boosted Decision Tree model is an ensemble of Decision Trees
® [he splits of each Decision Tree are chosen based on the training objective function

¢ |[n an ensemble each learner (tree) is relatively weak, but the aggregation is a stronger prediction

tree1 tree2

e.g. predict whether individuals

will like a computer game N /\
aa
&8
A

+2

f(Q)=2+09=29 f(&)=-1-09=-109

(3=

21/2/23 Low Latency Case Study - Sioni Summers

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

BDIs in HEP

e BDTs have been used for a long time in HEP

- You may be familiar with ROOT’s TMVA

¢ [hey have fallen in popularity compared to Neural Networks that can be
extremely powerful on lower level data

e Still some papers coming out in 2023 about their use in HEP!
® [hey remain useful and popular for some specific reasons:

- High level / tabular data

- Easy to get started

- Easy(ish) to interpret

- Robust (against overfitting, against irrelevant features

- Relatively inexpensive to train and then make predictions

21/2/23 Low Latency Case Study - Sioni Summers

22

May 20

25

[hep-ph]

"

S5v

arXiv:2109.1181

PREPARED FOR SUBMISSION TO JHEP

Boosted decision trees in the era of new physics: a
smuon analysis case study

Alan S. Comnell®, Wesley Doorsamy®, Benjamin Fuks®, Gerhard Harmsen®, and
Lara Mason""

= Department of Physics, Uninersity of J esburg, PO Bor 524, Auckiand Park 2006, South

Africa

stitute for Intelligent Systems, University of Johannesburg, PO Bor 524, Aucklend Park 2006,

South Afriea

“ Laboratoive de Physigue Théo , Sorbonne Untversité
ef CNRS, 4 place Jussieu, 75,

¢ el Hautes Enevgies (LPTHE), UMR 758
Paris Cedex 05, France

Insversitd de Lyon, F-69622 Lyon, France: Unsversitd Lyen 1, Villeurbanne €

UMRGS22, Institut de Physigue des 2 Infinis dz Lyon

Femail: a elld A, W) A N

il.com, mason®ipnl.inZp3.fr

gerhard . har

ABSTRACT: Machine learning slgorithms are growing incre

sics analyses, where they are used for their ahility to solve ¢

sion problems. While the tools are very powerful, they may
Thorben Finke,
Parada Prangchaikul. * Tobi;

In the following, we investigate the use of gradient boost

le

a generic particle physics problem. We use as an examy

smuon coll sis which applies to both current anc

o a traditional cut-and-count approac
wiekries in imbalanced datasels which are chars

compare

the use o

problems, ng an alternative to the widely used ares
through a nov

ture selection and investigation nsi

use of the F-score metric. We present

a principal compone
feature permutation methods in & way which we hope wil
par
the 95 % confide
potenti

_,
J

"

le physics analyses. Mareover, we show that a macl

evel exclusions oblained iu a b

an extended pet of feture
Jor anumaly detectio
search for new physies.

bypassing the need for complicated feature sel

possibility of constructing a general machine learning moc
a two-dimensional mass plune,
1. INTRODUCTION

The search for

proaches [3 13] have proven effec
cific signatu such as di-j

and harkgy
of hand-erafted
i generally
& background-domin

templave. Tn inter

111vl [hep-ph] 22 Sep 20

+* Marie Hein." | Gregor Kasieczka,®*
jas Quadfasel.* | David Shik," "' and Mauuel &

ider {LH¢

A Targar numher of potentially ne
sion trees s classifiees i v

madel

Back to the Roots:

malage, RWTH

ar fHambusy

While tiese owetho
nnees, their a,

w physics at the Large Hadron for their streny

ticular, on sm:
perform desp 1
views [14, 15
wrak

training set ma

2
trained to distinguish a signal region from may favor B

fected by unind
al fraction B)- In & high~

@ nal Togion i sm Ger noods to | Modelagnostic

N atify a small number of signal events in an overwhelm tures will inevi
=) anly the labeks f model. As suc
&2 wion and background template. Thus an important p
- i simple superv: i 1 problem be b -*'rl"d
.+ ingly challeng Kly supervised setting make BD'Ts an
7z al an « xtending thrse meth works.
N der range of new physics model out prior knowl- An importa
o) edge of the essential discriminative features requires han- weakly superv
< g & larger number of p

al deep bling can
conditions methads, th

In this paper we explore the use of hoceted decigion allows en:

We study ¢

take advantag
substructure of

The remainc
Section 11 des

Tree-Based Algorithms for Weakly Supervised Anomaly Detection

Michael Krémer,

caity, Plscatsuiny

hods have smerzed as 8 poweriul wol loe model-agrostic
i 1 remmarkable performance on

023

7 2

Nov

5

arXiv:2310.13057v2 [hep-ph] 1

Tn this paper, we show
¢ detection gives superior
ane well knvwn for Ui

¢ Alexander Miick.' 1
mmerhalder® '

pany

wenaly detection

PPREPARED FOR SUBMISSION TO JHEI®

Anomaly Detection in the Presence of
Irrelevant Features

Marat Freytsis,”* Maxim Perelstein,” Yik Chuen San*

“* Department of Physica, LEPP, Cornell [gity, Ithaca, NY 14853, USA

ARSTRACT: Experiments at particle colliders are the primary souree of insight into

physics at microscopic scales. Searches at these facilities often rely on optimization of
analyses targeting specific models of new physics. Increasingly, however, data-driven
model-agnostic approaches based on machine learning are also being explored. A ma
jor challenge is that such methods can be highly sensitive to the pr
irrelevant features in the data. This paper presents Boosted Decision Tree (BDT)

sed techniques to improve anomaly detection in the presence of many irrelev:

sence of many

b ant
features. First, a BDT classifier is shown to be more robust than neural networks
for the Classification Without

.abels approach to finding resonant excesses assuming
independence of resonant and non-resonant observables. Next, a tree-based probabil
ity density estimator using copula transformations demonst

ates significant stability
and improved performance over normalizing flows as irrelevant features are added.
The results make a compelling case for further development of tree-based algorithms

for more robust resonant anomaly detection in high energy physics.

Present 2

cisco, California 94960, USA

https://arxiv.org/pdf/2109.11815.pdf
https://arxiv.org/pdf/2309.13111.pdf
https://arxiv.org/pdf/2310.13057.pdf

BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X = | Xo, X1, X2, X3, X4, X5, X6, X7 I

O C

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

10

BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result
e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

¢ [he value of the terminal leaf is the tree prediction

O C

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

11

BDT Inference

e Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction

e Apply the inverse of the training loss function to obtain class probabilities

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

12

FPGAS

e Some characteristics of FPGAs to keep in mind...
* These were taught also by Giovanni, but it's okay to hear e 2 IRt mrIf“‘ ?%ﬁm:' ' T
things twice —L =T | : a g (ER e

e [WO types of parallelism: resource and pipeline ‘ s l =w

- Resource parallelism enables us to do different tasks : F | . S S e
simultaneously to reach low latency S | :

1

- Pipeline parallelism enables us to do the same task on
different data at high throughput

¢ |n the automotive factory the many robots are resource , _
parallelism and the conveyor belt is pipelining 7 T 4 ¥ ar =

e High performance requires use of both types / 4 7 . | >

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

Loop Analysis

From

o \With FPGAs we can take advantage of pipeline processing Gondve
iy
To
¢ \\We need to work to keep the pipeline filled with data ® Milano Centrale
: Co . < Tu, 28.11.2023 > 09:00 Arr — Settings
e Depends on the loops of our algorithm and their inter-dependencies
* First some terminology: Farlier connections
from CHF 61.10
L EA /&) Direction Brig Latency
_ 1) 1) :
Interva}I or ‘Initiation Interval’ : gap between start of subsequent IR —— P
executions of a process PL 6 TR B b 4 h 30 min
Interva‘l from CHF 37.60
- How often to trains depart the station” EAZEED Direction Brig
10:42 @ o o ® 16:35
- ‘Latency’ : delay between start of execution of a process, and output of ~ ™° the > 53 min
results | | | from CHF 61.20
EA /&) Direction Brig
. 12:10 @ o ® 16:40
- How long does it take to get from A to B? PI.6 1R 2§ "G 4 h 30 min
Interval from CHF 64.00

EA ==l Direction Milano Centrale

oo lo-ol o looP oo ool Voo oo ® PI. 6 1400 2.4 RS 41 1 min

O TP P — e O

i _ Latency .
Geneve Cornavin +—/—m-—om—§ Milano Centrale

21/2/23 Low Latency Case Study - Sioni Summers 14

Loop Analysis

¢ | 00ps can have dependencies that impacts scheduling, unrolling, and interval

e Consider this loop executed sequentially

< 3; 1++4)

[J i [J
. Add Write Add Write Add Write
al1] ;

- The loop has Latency 3 cycles, Interval 3 cycles

e This loop has no iteration dependence (iteration 1 does not depend on any other iteration)

- |t can be pipelined: loop has Latency 3 cycles, Interval 1 cycle

| . . - Add Write
for(i = 0; i < 3; 1i++) B i
= a j_ h
[] ’ - Add Write

o [fallof a[1] can be read simultaneously (e.g. it's in FPGA registers not BRAMSs), the loop can be unrolled

Add Write

< 3; 1++4)

for(1 = 0; 1 Add Write
= a[1] ;

Add Write

21/2/23 Low Latency Case Study - Sioni Summers

15

Loop Analysis

e Some loops have dependencies (loop-carried dependence)

. Write Write Write Write Write
= ali1-1];

e \We can’t pipeline or unroll this loop since the read of iteration 1 depends on the of iteration i-1

¢ [For best performance with parallel architectures, we need to understand and optimise our loops
- Defines how we can distribute loop iterations across different processing units
- Merge loops where possible

- Break dependencies by reordering loops

21/2/23 Low Latency Case Study - Sioni Summers

16

fixed-point arithmetic

¢ Introduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

123456 1.23456 x 10°

integer scientific notation

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

17

fixed-point arithmetic

¢ Introduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

0000123456 1.2345600 x 10005

scientific notation
10 digit integer 8 digit mantissa
3 digit exponent

0011010111 1.00110011 x 21011

floating point
8 bit mantissa
4 bit exponent

10 bit integer

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

fixed-point arithmetic

e I[ntroduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

¢ \Vith floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change
- Have constant relative precision

e \With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

- Have constant absolute precision

1.00110011 x 21011 01101.0011

floating point fixed point
8 bit mgnrzcissa 9 bit width
5 bit integer

4 bit exponent (4 bit fraction)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

19

fixed-point arithmetic

e I[ntroduced by Giovanni on Monday
e Reminder: floating-point is like scientific notation
¢ \Vith floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change

e \With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

High dynamic range

Cheap & fast arithmetic in hardware Expensive & slow in hardware

0011010111 01101.0011 1.00110011 x 21011

fixed point floating point
10 bit integer 9 bit width ating pe
Y 8 bit mantissa
5 bit integer

(4 bit fraction) 4 bit exponent

Expressiveness / Interpretability

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers 20

fixed-point for BDTs

¢ \When we train a BDT our data, thresholds, and scores have some real numerical values
¢ \\/e need to choose what data type to use for our model - in FPGAs we have freedome

¢ \\We could use floating point and not waste any brain cycles

- But it will always be more expensive than using fixed point

e Perform a numerical analysis of the model and see which range/precision is required

¢ [he first interactive exercise exposes how to control these in conifer

e Note: this not only applies to BDTs!

- Any algorithm that performs many arithmetic operations can benefit from a numerical analysis and choice of fixed-point types!

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

~ Conifer library

¢ conifer is a Python package, published to PyPI

- plp 1nstall conifer

e [t has a structure like a compiler

27/11/2023

- Converters / frontends for different BDT training libraries
- Internal Representation
- Backends for different compute targets

- Three FPGA targets that we’ll go through today

- CPU targets for reference / emulation rather than high
performance

) ONNX

>~ LightGBM
IMVA
dmlc

XGBoost O learn A TensorFlow

@ Decision Forests

: Yandex
CatBoost

/,5 Conifer

Conifer: BDTs on FPGASs - Sioni Summers

22

Example use case

e |mproving electron reconstruction in Correlator Layer 1 of CMS Phase 2 L1T

e Predict whether a pair of {track, calorimeter cluster} are consistent with both
originating from an electron

e Full e/y algorithm has 10 BDT copies, plus other logic (e.g. dR)

- Total consumes 3.1% VU13P LUTs, 18 cycles latency @ 180 MHz (100 ns)
o CMS-DP-2023-047

CMS Phase-2 Simulation Preliminary 14TeV, 200 PU

2 1 ~flat-p_electrons, Tight-ID, 1.49 < |n®"| < 2.4
AR (GEN, HGCAL Cluster) < 0.2 B ettt
< : ________________________________ Mﬂnﬂﬁa * BDT
N R
: P et -
® ..‘.. ..'..'.D"* o oot galn
> 08 oo
g | al
O o
= -
® 06 :
- i
u 5 Tk-matched electron
0.4 * pl' 28GeV (elliptic ID)
n * l
o
B Tk-matched electron
0.2— ’. " pL'> 27GeV (composite ID)
I =
OMqllll|llll|llll|llll|llll|llllllllllllll
0 10 20 30 40 50 60 70 80 90 100

pS=N [GeV]

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

[regionizer
I Particle-Flow
] PUPPI

I e/y algorithm
[e/y isolation
B /Yy sorter

- || BB infrastructure

23

https://cds.cern.ch/record/2868782?ln=en

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

24

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’

/N

RN

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

25

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
e For node ‘1°:

- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’

\

N\

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

20

Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves
e [For leaf node ‘3’
- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
® For node ‘1°;
- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’
e For node ‘0’:

- The decision path always passes through the root node

N\

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

27

Conifer Implementation

e For a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
¢ \\V\e can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously

e \\We can pipeline this over different data: each node can do a comparison on new data with lI=1

e For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE

e Concatenate the boolean for each leaf node — select the value corresponding to the leaf

— Tree score

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers 28

Tree Representation

e Before looking at the code, a note about data representation

¢ \\We represent trees “scikit-learn”-style ie flat
- No representation of individual nodes
- Each node variable (threshold, feature, value) is a tree-level array
- A left/right child index array points to the children for each node

e Some special values: -2’ typically means leaf (e.g. child index -2, feature -2)

Tree:
1ndex : [O,
children left : [1,
children right - 2,
parent : [-1,
feature : | 4,
threshold : [7,
value . [—-1,

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

~ ~ ~ ~ -

-

= O P O o U1 1N

-

HLS Code 1

e Perform all the comparisons simultaneously: unrol1l the loop

e Store boolean results in a fully-partitioned array “comparison”

// Execute all comparisons

Compare: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Only non-leaf nodes do comparisons

// negative values mean is a leaf (sklearn: -2)
1f (feature[1] >= 0) {

comparison|[1i] = x[featurel[1]] <= threshold[i];
telse

comparison 1] true;

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

HLS Code 2

e Compute the node activation (true if decision path traverses node, otherwise false)

27/11/2023

// Determine node activity for all nodes
int 1Leaf = 0;
Activate: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Root node is always active

1f (1 == 0){
activation[l] = true;
telsed

// If this node is the left child of its parent
if (1 == children left[parent[i]]) {

activation[i] = comparison[parent[i]] && activation[parent[i]];
}else{ // Else it is the right child
activation[i] = !comparison|[parent[i]] && activation[parent[i]];
}
}
// Skim off the leaves
if (children left[i] == -1){ // is a leaf
activation leaf[ileaf] = activation[i];
value leaf[1Leaf] = valuel1i];
1Leaf++;

Conifer: BDTs on FPGASs - Sioni Summers 31

HLS Code

e Compute the node activation (true if decision path traverses node, otherwise false)

for(int 1 = 0; 1 < n leaves; 1i++) {
1f (activation leaf[1]) {
return value leaf[1i];

J

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

32

¢ Did we achieve what we described?
¢ \/itis HLS Schedule Viewer in GUI
- Tree depth = 5, some sparsity

o Al
start

in parallel at the

e Cascade of boolean operations
- AND, OR, XOR, NOT

e ‘Aggregate’ at end

27/11/2023

Scheduling - Tree

t (clock cycles) ———————-—— ere—eee
| B N

icmp_In57_8(icmp)

icmp_[n57_9(icmp)

icmp_In57_10(icmp)
icmp_[n57_11(icmp)
icmp_[n57_12(icmp)
icmp_In57_13(icmp)
icmp_In57_14(icmp)
icmp_I[n57_15(icmp)
icmp_In57_16(icmp)
icmp_In57_17(icmp)
icmp_[n57_18(icmp)
icmp_In57_19(icmp)
icmp_[n57_20(icmp)

—— .

W

and_[n75(C)
and_[n73_1(&)
and_In73_2(&)
and_In75_1(C)
or_In88_1(|)
select_[n88_1(C)
and_[n73_5(&)
xor_In75_4(»)
and_In73_8(&)
and_[n73_9(&)
and_[n73_10(&)
and_In75_2(C)
and_In75_3(C)
or_In88_3(|)
or_In88_5(|)
or_In88_8(|)
or_In88_10(|)
or_In88_14(|)
select_[n88_3(C)
select_[n88_5(C)
select_ln88_7(C)
select_[n88_9(C)
select_ln88_11(C)
and_In73_13(&)
and_[n73_16(&)
and_[n75_4(C)
and_In73_18(&)
or_In88_12(|)
or_In88_16(|)
or_In88_18(|)
select_[n88_13(C)
select_[n88_15(C)
select_[n88_17(C)

agg_result(C)

Conifer: BDTs on FPGASs - Sioni Summers

Conifer Implementation

e [or a forest: aggregate over all trees - normally summation, but can be other e.g. some quantile

o A parallel addition also uses a kind of tree: adder tree (like “pairwise reduce”)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

34

SChedU“ng - ForeSt t (clock cycles) ——>

Operation\Control Step

: ' . decision_function_19(Function)

e Did we achieve what we described? o el e e —_———
decision_function_7(function)

decision_function_6(function)

¢ \itis HLS Schedule Viewer in GUI decision_function_5(function) =

decision_function_4(function)

decision_function_3(function)
decision_function_2(function)

- Number Of trees — 20 decision_function_1(Function) S —————— s

decision_function(function)

decision_function_17(Function)
I Y I Y T I Gy T I

- Tree from previous slides is one of them LI L (s ——

decision_function_15(Function)
decision_function_14(Function)
. . decision_function_13(Function)
® A” tree |ﬂfereﬂCeS performed Iﬂ para”el decision_function_12(Function) e
decision_function_11(function)
decision_function_10(Function)
" " decision_function_9(function)
¢ Tree Scores Summed ln palrs decision_function_8(function)
add_[n116_4(+)
add_[n116_5(+)
e [otal latency: 7 clock cycles add_In116_9(+)
add In116_10(+)
add In116_13(+)
add _In116_15(+)
add_In116_16(+)
add_In116(+)
add_In116_1(+)
add_[n116_2(+)
add_In116_3(+)
add_[n116_6(+)
add_[n116_7(+)
add In116_11(+)
add_[n116_12(+)
add _In116_14(+)
add _In116_17(+)
add _In116_8(+)
add _In116_18(+)
add_In116_19(+)

score_write_In10(write)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

e Each tree uses independent logic

® Resource usage depends on
structure of the tree

¢ Since thresholds are ‘baked in’ to
comparisons, resource usage of
each ‘>=" can depend on the
threshold value as well

e Can see up to factor 2 difference
N LUT usage of different trees

e Normally FFs would also be used
but this model must be too
trivial...

27/11/2023

+ Detail:

* Instance:

- e —
| Instance | Module
o tom -

| scores 9 decision function fu 161

| scores 8 " decision function 1 fu 153

| scores 16 dec151on functlon 1O fu 223
| scores 15 dec151on functlon 11 fu 215
| scores 14 d60151on functlon 12 fu 209
| scores 13 dec151on functlon 13 fu 201
| scores 12 dec181on functlon 14 fu 193
| scores 11 dec151on functlon 15 fu 185
| scores 10 dec151on functlon 16 fu 177
| scores 19 " decision function 17 fu 169
| scores 1 decision function 18 fu 97

| scores decision function 19 fu 89

| scores 7 dec151on functlon 2 fu 145

| scores 6 de0151on functlon 3 fu 137

| scores 5 dec151on functlon 4 fu 129

| scores 4 " decision function 5 fu 121
|scores_B_dec1Slon_functlon_6_fu_l13

| scores 2 decision function 7 fu 105
|scores 18 decision function 8 fu 235
|scores 17 decision function 9 fu 229

Conifer: BDTs on FPGASs - Sioni Summers

Resource Usage - Irees

|decision function
|decision function 1
|decision functlon 10
|decision functlon 11
|decision functlon 12
|decision functlon 13
|decision functlon 14
|decision function 15
Ide0151on_functlon_16
|decision function 17
|decision functlon 18
|decision function 19
|deClSlOH_funCthD_2
|decision function 3
|decision function 4
|decision function 5
|decision function 6
|decision function 7
|decision function 8
|decision function 9

————————— e et T T T
BRAM 18K| DSP| FF| LUT | URAM|
————— I T e e
0| 0] 0] 206] 0 |
0| 0] O 2406 0|
0| O] O 278] 0|
0| O] 0O 268] 0|
0| O] O 167] 0|
0 | 0] O] 268] 0|
O | O 0O 247 O |
0| 0] 0O 282] 0|
0| 0] 0O 208] 0|
0| O] O 153 0|
0| O] O 232 0|
0 | O O] 234] 0|
0| 0] 0] 248] O |
0| O] O 278] 0|
0| O] O 190 0|
0| O] 0O 243 0|
0| O] 0O 232 0|
0| O] 0O 230 0|
O | O] 0] 208] O |
0| O] 0O 248] 0|
————————— e et e TETEEE E
0| 0] O| 4666 0|
————————— e et T TR

36

Exercise 1 - mini quiz

e Given what we now know about the implementation, how do you expect the resources and latency to vary with number of
trees and depth?

2 | g 1
o O
| -
- -
o O
7p) N
w ¢
o . o
> >
Number of Trees Maximum Depth
A > i
> $)
O -
; 2
©
®© 2
-

>

Maximum Depth

>

Number of Trees

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

¢ \Ve synthesized 1000 BDT models to find out!

Exercise 1 - mini quiz

700000 1 max_depth n_trees
2 50 700000 -
600000 - 3 181 — 100
— — 150 600000 -
500000 4 —— 3 16 4 —— 200
— 0 —_— 250 500000 -
400000{ — 7 =
- — 8 = 14 1 | 400000 -
= o =
300000 - 8
300000 -
12 -
10 A
100000 A 100000 -
0 1 8 - 0 -
0 50 100 150 200 250 300 2 3 5 8 0 100002000030000 4000050000 6000070000
n_trees max_depth n_nodes
20.0 max_depth 20.0 1 n_trees 20.0 - \V
2 50
17.5 A 3 17.5 9 —— 100 17.5 A
— 4 - 150
15.0 - — 3 15.0 { — 200 15.0 -
—_— 0 —_— 250
i e i i
- 12.5 - 12.5 - 12.5
(@) — 8 U U
c c c
L Q Q
‘© 10.0 - ‘© 10.0 - ‘© 10.0 -
7.5 4 7.5 A 7.5 1
5.0 A 5.0 A 5.0 A
2.5 1 2.5 2.5
0 50 100 150 200 250 300 2 3 - 5 6 7 8 0 100002000030000 4000050000 6000070000
n_trees max_depth n_nodes

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

Section 1 summary

¢ \We've discussed Boosted Decision Trees (BDTs) and how they work algorithmically
¢ \We've discussed FPGAs and their features that make them suitable for high performance computation
¢ \\e’ve discussed the conifer library for BDTs in FPGASs

- How the inference algorithm is designed for low latency and high throughput - ‘inverting the problem’

- We looked at how that’s written in HLS

- We looked at how that HLS synthesizes to the intended design
e Some useful guiding principles:

- Think about how the problem should map onto parallel and pipelined logic before writing code

- That said sometimes with HLS it’s easier to just write the code and see what happens

- Think ‘oranchless’: the logic is always doing something, but sometimes you don’t use its result

e Next we will get a first hands on with conifer

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

39

Break

Exercise 1

e Conifer conversion and HLS walkthrough

e Clone the GitHub repository and work through notebook part 1
—git clone https://github.com/thesps/conifer—-tutorial

- If you go through it fast, try changing things like training a model with a different size (humber of trees, maximum depth)

e Return for a summary...

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

41

FPGAs, HLS, and Boosted Decision Trees with

/> Conifer

Section 2

VHDL

e conifer also has a hand-written VHDL 2;Eigﬁfion(®) <= true; —— the root node is always active
implementation for i in 1 to nNodes-1 generate
LeftChild:
e \\e won’t use it extensively today but it can if i = iChildLeft(iParent(i)) generate
be interesting to compare side-by-side the process(clk)
HLS with the VHDL begin

if rising_edge(clk) then
activation(i) <= comparisonPipe(depth(1i)) (1Parent(1))

e Notebook part 1b will walk you through it and activation(iParent(i)):
end 1f;
¢ [0 the right is the VHDL version of the tree end process;
traversal that we previously saw in HLS end generate LeftChild;
RightChild:
e The main difference is that we have to do if i = iChildRight(iParent(i)) generate
the scheduling of operations to clock cycles Eggiﬁss (clk)
ourselves in VHDL if rising_edge(clk) then
activation(i) <= (not comparisonPipe(depth(1i)) (i1Parent(1)))
- Each ‘if rising_edge(clk) then’ registers a and activation(iParent(i)):
signal end 1if;
end process;
- It can be very unintuitive - the latency of this end generate RightChild;
section of code depends on the maximum end generate GenAct;

depth of the tree

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers 43

Building accelerators

00

e \Ve can target Xilinx FPGAs as accelerators using Vitis

¢ \\/e need to add interfaces for the data I/O

e Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host

Sk

— card — host

s¥32ch FReCET
Egfiz: RoDEEA
goOUOD DOODDD

e After synthesizing our block with Vitis HLS, we run Vitis by
iINnvoking v++ to ‘link’ our design

e Under-the-hood it runs Vivado for full Place and Route

void times 2(int N, intx x, intx y){
#pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
#pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int i = 0; i < N; i++){

#pragma hls pipeline
y[i]l = x[1i] * 2;
s

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

3 [i
IW‘LLL" IW' "Ll‘u‘u‘l‘l‘lm‘l‘lm‘lm‘lmu‘lm‘th l‘u‘u‘l‘u‘u‘uumuu‘u‘u‘u‘l‘u‘lL_t
i H H £ i
; £ g g
13 £ 3 |3
4 5 w o
¥
-
k |
FIFTFFFF

44

Building accelerators

e \Ve can target Xilinx FPGAs as accelerators using Vitis
¢ \Ve need to add interfaces for the data /O

e Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host I
— card — host

e After synthesizing our block with Vitis HLS, we run Vitis by
iINnvoking v++ to ‘link’ our design

.......
Y3

e Under-the-hood it runs Vivado for full Place and Route

E
FaE=—=

X1Y2

void times 2(int N, intx x, intx y){
#pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
#pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int 1 = 0; i < N; i++){
#pragma hls pipeline
yli] = x[i] x 2;

Y0

}
}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

45

Building accelerators

¢ |n conifer we add a section to the
configuration to specify the target FPGA
and some settings

- An important one is the data type of the
data on the bus

- The default is T loat, cast to ap_fixed
in FPGA

e conifer adds some HLS dressing to read/
write data and execute inference in a
variable bound loop (like Alveo example)

27/11/2023

void copy_input(int n, accelerator_input_tx x_in, input_arr_t x_int){
for(int i = 0; i < n_features; i++){
x_int[i] = x_in[n_featuresxn + i];
}

}

void copy output(int n, score_arr_t score_int, accelerator_output tx score_ou
for(int 1 = @; i < BDT::fn_classes(n_classes); i++){
score_out[BDT::fn_classes(n_classes)*n + i] = score_int[i];
+

}

void myproject accelerator(int N, int& n_f, int& n_c, accelerator_input tx X,
#pragma HLS interface mode=m_axi port=x offset slave bundle=gmem0
#pragma HLS interface mode=m_ax1i port=score offset=slave bundle=gmem@
#pragma HLS interface mode=s_axilite port=N
#pragma HLS interface mode=s_axilite port=n_f
#pragma HLS interface mode=s_axilite port=n_c
n_f = n_features;

n c = BDT::fn _classes(n_classes);
for(int n = @; n < N; n++){
#pragma HLS pipeline
input_arr_t x_int;
score_arr_t score_int;
copy_input(n, x, x_int);
bdt.decision function(x_int, score_int);
copy_output(n, score_int, score);

Conifer: BDTs on FPGASs - Sioni Summers 46

Forest Processing Unit

e So far we looked at ‘static’ BDT evaluation
- One trained model = one HLS function = one IP — one bitfile

- S0 if the model changes at all, we need to redo everything — takes hours!
¢ |n next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU)

e |t's still Implemented with HLS, so will be a first look at going away from fixed-latency, fixed-function types of designs using
HLS

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

47

FPU Design

¢ \We would like a base design that can perform inference of ~any BDT model afterwards (within some [imits)
e And we would like to take advantage of the FPGA to get good performance (fast inference)
e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

48

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

¢ Use a data representation like we already used, and map to BRAMSs

- Many independent small memories

e Store one node at one address, child indices are pointers to other addresses

Tree Engine Tree:
1ndex : [0O, 1, 2, 3, 4,
children left = [1, 3, 5, -2, -2,
Inference children right : [2, 4, 6, -2, =2,
Logic parent . [-1, 0, O, 1, 1,
feature : [4, 7, 1, -2, -2,
threshold [7, 2, S, -2, =2,
value : [-1, -1, -1, 0.5, 0.4,

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

e [0 perform inference of a model on some data we need to:
- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e Question: what would be the pipeline initiation interval of this loop®?

Tree Engine

void TreeEngine(T XINVARS], DecisionNode nodes [NNODES], U& y)A{
#pragma HLS pipeline
ap_int<ADDRBITS> i = 0;
auto node = nodes[i];
node_loop : while(!node.is_leaf){
#pragma HLS pipeline
— i = X[node.feature] <= node.threshold ?
node.child_left : node.child right;
node = nodes[i];

}
Yy = node.score;

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

50

FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

e [0 perform inference of a model on some data we need to:
- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e Question: what would be the pipeline initiation interval of this loop®?

Tree Engine

p——— e e t———— p———— p——— e p——— +
Latency (cycles) Iteration| Initiation Interval Trip
Loop Name min | max Latency achieved | target Count| Pipelined

Inference — node_loop 7| ? 3 3 1 ? yes
Logic e +————— t——————— e — N —— PE— I +

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

FPU Design

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
e Put as many Iree Engines as will fit in the FPGA

e Number of Tree Engines will constrain the model size that fits

Tree Engine Tree Engine Tree Engine Tree Engine

Inference Inference Inference Inference
Logic Logic Logic . Logic

Aggregator

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

52

FPU Design

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
e Put as many Iree Engines as will fit in the FPGA

e Number of Tree Engines will constrain the model size that fits

U y_acc = 0;
for(int i = 0; i < NTE; i++){
#pragma HLS unroll
Uy 1= 20,
TreeEngine(X, nodes[i], y_1i);
y_acc += vy _1;

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

53

FPU System Design

e Putting it together

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do

¢ Define the node memories as static to keep the data in between function calls

- Load nodes once, perform inference later whenever (multiple times)

- Later load new nodes for a different model..

e This code is a simplified view of that:

void fpu_top level(intx X, intx y, int instruction, DecisionNodex nodes)q
#pragma 1interface ..
static DecisionNode nodes_internal[NTE] [NNODES];
#pragma HLS array_partition variable=nodes_int dim=1
if(instruction == 0){
load nodes(nodes, nodes internal);

s

if(instruction == 1){
decision_function(X, y);

s

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

54

FPU Floorplan

e FPU with 200 Tree Engines in Alveo U50

- Each TE is highlighted in colour (with a repeating cycle)
e BRAMSs for nodes are in columns

* | ogic near BRAMs is TE inference logic

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

55

FPU Floorplan

e FPU with 100 Tree Engines in pyng-z2
- Each TE is highlighted in colour (with a repeating cycle) | :
e BRAMSs for nodes are in columns

* | ogic near BRAMs is TE inference logic

;r Bine: feEyecy: |
§'F pF!irggf .
LT A BEE

ie BPEPERE.

i+ EEE ;ig B .:_

p!
This

.? H]

6 il
i'?:f "“

BRAM column

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

Section 2 summary

¢ \We’ve looked at some steps beyond the first model-specific HLS
e Hand-written VHDL implementation of the same code
e Building accelerators from the model-specific HLS
e Designing reconfigurable architectures with HLS - the Forest Processing Unit
- A design where the specific BDT model is unknown at build time, and loaded later as data
e Next we will try these three things
e Note: in the exercises we will run some ‘accelerators’
- Probably in practise they will actually be ‘decelerators’

- There are some examples where they give a real speed up, but it typically requires a large model and lots of data (batch size)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

57

Break

Exercise 2

e Part 2a : building a static accelerator (Model-specific HLS — bitfile = runtime)
- Will take around 1 hour of build time

e Part 2b: FPU hands on (straight to inference after downloading the bitfile)
- Need to share access to the FPGA cards so don’t all try this at once

e Part 1b: If waiting for a synthesis or access to an Alveo try this VHDL notebook

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

59

Summary

¢ \\Ve have looked in detail at the conifer package for BDT inference on FPGAS
e \\We've gone through the different implementations and learned some more about HLS and FPGA programming

e This afternoon we will look at his4dml for NNs on FPGAs

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers

60

