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Introduction

e Boosted Decision Trees (BDTs) or Decision Forests are a Machine Learning method to make predictions from data
e Conifer is a Python library for converting BDTs to FPGASs for fast inference
- Different implementations for different use cases
* |n this session we will:
- Learn how BDTs work for training and inference
- Learn three ways how BDT inference is implemented for FPGAS in conifer
- Learn how to use conifer to deploy BDTs on FPGAS
e The aim is to both learn how to use conifer, and use it to study more about HLS and FPGA implementations
* | inks, references:

- Conifer GitHub repository: https://github.com/thesps/conifer

- Conifer website (docs and downloads): https://ssummers.web.cern.ch/conifer/

- Paper: Fast Inference of Boosted Decision Irees in FPGAS for particle physics
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About me

e PhD in HEP from Imperial College London
e PhD Thesis: “Applications of FPGAs to triggering in particle physics”

e Recently Senior Fellow, now Applied Physicist at CERN working on Level 1 Trigger Upgrade for CMS
e \Where we want to do complicated processing very fast on FPGAs and use HLS extensively

¢ |'ve mostly worked on designing and implementing detector reconstruction algorithms for Level 1 Trigger
e [rack & vertex reconstruction, particle flow, jets

e Also using Machine Learning in the triggers on FPGAs with low latency

* hils4dml and conifer both as a developer and user
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Quick ML Introduction

e Using XGBoost’s Elements of Supervised [ earning Introduction

e Train a model on training data to predict target variable y from features «
e y = f(O, z) model parameters 6

e Train to find best parameters according to an objective function

o 0bj(®) = L(O) + 2(6) L oss function L, Regularization {2

e Supervised learning trains on labelled data so we can evaluate some metric of prediction quality

e £.g. mean squared error L(O) =2 (yi - i)~ where y; are our truth labels and j; are the model predictions
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Quick ML Introduction

e Using XGBoost’s Elements of Supervised [ earning Introduction

e Train a model on training data to predict target variable y from features «

e A Boosted Decision Tree model is an ensemble of Decision Trees
® [he splits of each Decision Tree are chosen based on the training objective function

¢ |[n an ensemble each learner (tree) is relatively weak, but the aggregation is a stronger prediction

tree1 tree2

e.g. predict whether individuals
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BDIs in HEP

e BDTs have been used for a long time in HEP

- You may be familiar with ROOT’s TMVA

¢ [hey have fallen in popularity compared to Neural Networks that can be
extremely powerful on lower level data

e Still some papers coming out in 2023 about their use in HEP!
® [hey remain useful and popular for some specific reasons:

- High level / tabular data

- Easy to get started

- Easy(ish) to interpret

- Robust (against overfitting, against irrelevant features

- Relatively inexpensive to train and then make predictions

21/2/23 Low Latency Case Study - Sioni Summers
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BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X = | Xo, X1, X2, X3, X4, X5, X6, X7 I

O C
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BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C
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BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result

e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

X=[_1121_1_r31_1_15]

O C
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BDT Inference

e Start at the root node - compare the selected feature with the threshold, go left or right depending on result
e Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

¢ [he value of the terminal leaf is the tree prediction

O C
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BDT Inference

e Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction

e Apply the inverse of the training loss function to obtain class probabilities

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPGAS

e Some characteristics of FPGAs to keep in mind...
* These were taught also by Giovanni, but it's okay to hear e 2 IRt mrIf“‘ ?%ﬁm:' ' T
things twice —L =T | : a g (ER e

e [WO types of parallelism: resource and pipeline ‘ s l =w

- Resource parallelism enables us to do different tasks : F | . S S e
simultaneously to reach low latency S | :

1

- Pipeline parallelism enables us to do the same task on
different data at high throughput

¢ |n the automotive factory the many robots are resource , _
parallelism and the conveyor belt is pipelining 7 T 4 ¥ ar =

e High performance requires use of both types / 4 7 . | >
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Loop Analysis

From

o \With FPGAs we can take advantage of pipeline processing Gondve
iy
To
¢ \\We need to work to keep the pipeline filled with data ® Milano Centrale
: Co . < Tu, 28.11.2023 > 09:00 Arr — Settings
e Depends on the loops of our algorithm and their inter-dependencies
* First some terminology: Farlier connections
from CHF 61.10
L EA /&) Direction Brig Latency
_ 1 ) 1 ) :
Interva}I or ‘Initiation Interval’ : gap between start of subsequent IR —— P
executions of a process PL 6 TR B b 4 h 30 min
Interva‘l from CHF 37.60
- How often to trains depart the station” EAZEED Direction Brig
10:42 @ o o ® 16:35
- ‘Latency’ : delay between start of execution of a process, and output of ~ ™° the > 53 min
results | | | from CHF 61.20
EA /&) Direction Brig
. 12:10 @ o ® 16:40
- How long does it take to get from A to B? PI.6 1R 2§ "G 4 h 30 min
Interval from CHF 64.00

EA ==l Direction Milano Centrale

oo lo-ol o looP oo ool Voo oo ® PI. 6 1400 2.4 RS 41 1 min

O TP P — e O

i _ Latency .
Geneve Cornavin +—/—m-—om—§ Milano Centrale
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Loop Analysis

¢ | 00ps can have dependencies that impacts scheduling, unrolling, and interval

e Consider this loop executed sequentially

< 3; 1++4)

[ J i [ J
. Add Write Add Write Add Write
al1] ;

- The loop has Latency 3 cycles, Interval 3 cycles

e This loop has no iteration dependence (iteration 1 does not depend on any other iteration)

- |t can be pipelined: loop has Latency 3 cycles, Interval 1 cycle

| . . - Add Write
for(i = 0; i < 3; 1i++) B i
= a j_ h
[ ] ’ - Add Write

o [fallof a[1] can be read simultaneously (e.g. it's in FPGA registers not BRAMSs), the loop can be unrolled

Add Write

< 3; 1++4)

for(1 = 0; 1 Add Write
= a[1] ;

Add Write

21/2/23 Low Latency Case Study - Sioni Summers
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Loop Analysis

e Some loops have dependencies (loop-carried dependence)

. Write Write Write Write Write
= ali1-1];

e \We can’t pipeline or unroll this loop since the read of iteration 1 depends on the of iteration i-1

¢ [For best performance with parallel architectures, we need to understand and optimise our loops
- Defines how we can distribute loop iterations across different processing units
- Merge loops where possible

- Break dependencies by reordering loops

21/2/23 Low Latency Case Study - Sioni Summers

16



fixed-point arithmetic

¢ Introduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

123456 1.23456 x 10°

integer scientific notation

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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fixed-point arithmetic

¢ Introduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

0000123456 1.2345600 x 10005

scientific notation
10 digit integer 8 digit mantissa
3 digit exponent

0011010111 1.00110011 x 21011

floating point
8 bit mantissa
4 bit exponent

10 bit integer

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers



fixed-point arithmetic

e I[ntroduced by Giovanni on Monday

e Reminder: floating-point is like scientific notation

¢ \Vith floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change
- Have constant relative precision

e \With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

- Have constant absolute precision

1.00110011 x 21011 01101.0011

floating point fixed point
8 bit mgnrzcissa 9 bit width
5 bit integer

4 bit exponent (4 bit fraction)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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fixed-point arithmetic

e I[ntroduced by Giovanni on Monday
e Reminder: floating-point is like scientific notation
¢ \Vith floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change

e \With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

High dynamic range

Cheap & fast arithmetic in hardware Expensive & slow in hardware

0011010111 01101.0011 1.00110011 x 21011

fixed point floating point
10 bit integer 9 bit width ating pe
Y 8 bit mantissa
5 bit integer

(4 bit fraction) 4 bit exponent

Expressiveness / Interpretability

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers 20



fixed-point for BDTs

¢ \When we train a BDT our data, thresholds, and scores have some real numerical values
¢ \\/e need to choose what data type to use for our model - in FPGAs we have freedome

¢ \\We could use floating point and not waste any brain cycles

- But it will always be more expensive than using fixed point

e Perform a numerical analysis of the model and see which range/precision is required

¢ [he first interactive exercise exposes how to control these in conifer

e Note: this not only applies to BDTs!

- Any algorithm that performs many arithmetic operations can benefit from a numerical analysis and choice of fixed-point types!

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers



~ Conifer library

¢ conifer is a Python package, published to PyPI

- plp 1nstall conifer

e [t has a structure like a compiler

27/11/2023

- Converters / frontends for different BDT training libraries
- Internal Representation
- Backends for different compute targets

- Three FPGA targets that we’ll go through today

- CPU targets for reference / emulation rather than high
performance

) ONNX

>~ LightGBM
IMVA
dmlc

XGBoost O learn A TensorFlow

@ Decision Forests

: Yandex
CatBoost

/,5 Conifer

Conifer: BDTs on FPGASs - Sioni Summers
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Example use case

e |mproving electron reconstruction in Correlator Layer 1 of CMS Phase 2 L1T

e Predict whether a pair of {track, calorimeter cluster} are consistent with both
originating from an electron

e Full e/y algorithm has 10 BDT copies, plus other logic (e.g. dR)

- Total consumes 3.1% VU13P LUTs, 18 cycles latency @ 180 MHz (100 ns)
o CMS-DP-2023-047

CMS Phase-2 Simulation Preliminary 14TeV, 200 PU

2 1 ~flat-p_electrons, Tight-ID, 1.49 < |n®"| < 2.4
AR (GEN, HGCAL Cluster) < 0.2 B ettt
< : ________________________________ Mﬂnﬂﬁa * BDT
N R
: P et -
® ..‘.. ..'..'.D"* o oot galn
> 08 oo
g | al
O o
= -
® 06 :
- i
u 5 Tk-matched electron
0.4 *  pl' 28GeV (elliptic ID)
n * l
o
B Tk-matched electron
0.2— ’. " pL'> 27GeV (composite ID)
I =
OMqllll|llll|llll|llll|llll|llllllllllllll
0 10 20 30 40 50 60 70 80 90 100

pS=N [GeV]

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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B /Yy sorter

- || BB infrastructure
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Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’

/N

RN

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves

e For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
e For node ‘1°:

- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’

\

N\

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Conifer Implementation

e [or a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node”?” starting at the leaves
e [For leaf node ‘3’
- The decision path reaches ‘3’ if: the decision path reached ‘1° AND the comparison at ‘1’ goes ‘left’
® For node ‘1°;
- The decision path reaches ‘1’ if: the decision path reached ‘0" AND the comparison at ‘O’ goes ‘left’
e For node ‘0’:

- The decision path always passes through the root node

N\

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Conifer Implementation

e For a tree: find which leaf is reached given a data sample x
¢ ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
¢ \\V\e can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously

e \\We can pipeline this over different data: each node can do a comparison on new data with lI=1

e For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE

e Concatenate the boolean for each leaf node — select the value corresponding to the leaf

— Tree score

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers 28



Tree Representation

e Before looking at the code, a note about data representation

¢ \\We represent trees “scikit-learn”-style ie flat
- No representation of individual nodes
- Each node variable (threshold, feature, value) is a tree-level array
- A left/right child index array points to the children for each node

e Some special values: -2’ typically means leaf (e.g. child index -2, feature -2)

Tree:
1ndex : [ O,
children left : [ 1,
children right - 2,
parent : [ -1,
feature : | 4,
threshold : [ 7,
value . [—-1,

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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HLS Code 1

e Perform all the comparisons simultaneously: unrol1l the loop

e Store boolean results in a fully-partitioned array “comparison”

// Execute all comparisons

Compare: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Only non-leaf nodes do comparisons

// negative values mean is a leaf (sklearn: -2)
1f (feature[1] >= 0) {

comparison|[1i] = x[featurel[1]] <= threshold[i];
telse

comparison 1] true;

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers



HLS Code 2

e Compute the node activation (true if decision path traverses node, otherwise false)

27/11/2023

// Determine node activity for all nodes
int 1Leaf = 0;
Activate: for(int 1 = 0; 1 < n nodes; 1++) {
#pragma HLS unroll
// Root node is always active

1f (1 == 0){
activation[l] = true;
telsed

// If this node is the left child of its parent
if (1 == children left[parent[i]]) {

activation[i] = comparison[parent[i]] && activation[parent[i]];
}else{ // Else it is the right child
activation[i] = !comparison|[parent[i]] && activation[parent[i]];
}
}
// Skim off the leaves
if (children left[i] == -1){ // is a leaf
activation leaf[ileaf] = activation[i];
value leaf[1Leaf] = valuel1i];
1Leaf++;

Conifer: BDTs on FPGASs - Sioni Summers 31



HLS Code

e Compute the node activation (true if decision path traverses node, otherwise false)

for(int 1 = 0; 1 < n leaves; 1i++) {
1f (activation leaf[1]) {
return value leaf[1i];

J

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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¢ Did we achieve what we described?
¢ \/itis HLS Schedule Viewer in GUI
- Tree depth = 5, some sparsity

o Al
start

in parallel at the

e Cascade of boolean operations
- AND, OR, XOR, NOT

e ‘Aggregate’ at end

27/11/2023

Scheduling - Tree

t (clock cycles) ———————-—— ere—eee
| B N

icmp_In57_8(icmp)

icmp_[n57_9(icmp)

icmp_In57_10(icmp)
icmp_[n57_11(icmp)
icmp_[n57_12(icmp)
icmp_In57_13(icmp)
icmp_In57_14(icmp)
icmp_I[n57_15(icmp)
icmp_In57_16(icmp)
icmp_In57_17(icmp)
icmp_[n57_18(icmp)
icmp_In57_19(icmp)
icmp_[n57_20(icmp)

—— .

W

and_[n75(C)
and_[n73_1(&)
and_In73_2(&)
and_In75_1(C)
or_In88_1(|)
select_[n88_1(C)
and_[n73_5(&)
xor_In75_4(»)
and_In73_8(&)
and_[n73_9(&)
and_[n73_10(&)
and_In75_2(C)
and_In75_3(C)
or_In88_3(|)
or_In88_5(|)
or_In88_8(|)
or_In88_10(|)
or_In88_14(|)
select_[n88_3(C)
select_[n88_5(C)
select_ln88_7(C)
select_[n88_9(C)
select_ln88_11(C)
and_In73_13(&)
and_[n73_16(&)
and_[n75_4(C)
and_In73_18(&)
or_In88_12(|)
or_In88_16(|)
or_In88_18(|)
select_[n88_13(C)
select_[n88_15(C)
select_[n88_17(C)

agg_result(C)

Conifer: BDTs on FPGASs - Sioni Summers




Conifer Implementation

e [or a forest: aggregate over all trees - normally summation, but can be other e.g. some quantile

o A parallel addition also uses a kind of tree: adder tree (like “pairwise reduce”)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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SChedU“ng - ForeSt t (clock cycles) ——>

Operation\Control Step

: ' . decision_function_19(Function)

e Did we achieve what we described? o el e e —_———
decision_function_7(function)

decision_function_6(function)

¢ \itis HLS Schedule Viewer in GUI decision_function_5(function) =

decision_function_4(function)

decision_function_3(function)
decision_function_2(function)

- Number Of trees — 20 decision_function_1(Function) S —————— s

decision_function(function)

decision_function_17(Function)
I Y I Y T I Gy T I

- Tree from previous slides is one of them LI L (s ——

decision_function_15(Function)
decision_function_14(Function)
. . decision_function_13(Function)
® A” tree |ﬂfereﬂCeS performed Iﬂ para”el decision_function_12(Function) e
decision_function_11(function)
decision_function_10(Function)
" " decision_function_9(function)
¢ Tree Scores Summed ln palrs decision_function_8(function)
add_[n116_4(+)
add_[n116_5(+)
e [otal latency: 7 clock cycles add_In116_9(+)
add In116_10(+)
add In116_13(+)
add _In116_15(+)
add_In116_16(+)
add_In116(+)
add_In116_1(+)
add_[n116_2(+)
add_In116_3(+)
add_[n116_6(+)
add_[n116_7(+)
add In116_11(+)
add_[n116_12(+)
add _In116_14(+)
add _In116_17(+)
add _In116_8(+)
add _In116_18(+)
add_In116_19(+)

score_write_In10(write)

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers



e Each tree uses independent logic

® Resource usage depends on
structure of the tree

¢ Since thresholds are ‘baked in’ to
comparisons, resource usage of
each ‘>=" can depend on the
threshold value as well

e Can see up to factor 2 difference
N LUT usage of different trees

e Normally FFs would also be used
but this model must be too
trivial...

27/11/2023

+ Detail:

* Instance:

- e —
| Instance | Module
o tom -

| scores 9 decision function fu 161

| scores 8 " decision function 1 fu 153

| scores 16 dec151on functlon 1O fu 223
| scores 15 dec151on functlon 11 fu 215
| scores 14 d60151on functlon 12 fu 209
| scores 13 dec151on functlon 13 fu 201
| scores 12 dec181on functlon 14 fu 193
| scores 11 dec151on functlon 15 fu 185
| scores 10 dec151on functlon 16 fu 177
| scores 19 " decision function 17 fu 169
| scores 1 decision function 18 fu 97

| scores decision function 19 fu 89

| scores 7 dec151on functlon 2 fu 145

| scores 6 de0151on functlon 3 fu 137

| scores 5 dec151on functlon 4 fu 129

| scores 4 " decision function 5 fu 121
|scores_B_dec1Slon_functlon_6_fu_l13

| scores 2 decision function 7 fu 105
|scores 18 decision function 8 fu 235
|scores 17 decision function 9 fu 229
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Resource Usage - Irees

|decision function
|decision function 1
|decision functlon 10
|decision functlon 11
|decision functlon 12
|decision functlon 13
|decision functlon 14
|decision function 15
Ide0151on_functlon_16
|decision function 17
|decision functlon 18
|decision function 19
|deClSlOH_funCthD_2
|decision function 3
|decision function 4
|decision function 5
|decision function 6
|decision function 7
|decision function 8
|decision function 9

————————— e et T T T
BRAM 18K| DSP| FF| LUT | URAM|
————— I T e e
0| 0] 0] 206] 0 |
0| 0] O 2406 0|
0| O] O 278] 0|
0| O] 0O 268] 0|
0| O] O 167] 0|
0 | 0] O] 268] 0|
O | O 0O 247 O |
0| 0] 0O 282] 0|
0| 0] 0O 208] 0|
0| O] O 153 0|
0| O] O 232 0|
0 | O O] 234] 0|
0| 0] 0] 248] O |
0| O] O 278] 0|
0| O] O 190 0|
0| O] 0O 243 0|
0| O] 0O 232 0|
0| O] 0O 230 0|
O | O] 0] 208] O |
0| O] 0O 248] 0|
————————— e et e TETEEE E
0| 0] O| 4666 0|
————————— e et T TR
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Exercise 1 - mini quiz

e Given what we now know about the implementation, how do you expect the resources and latency to vary with number of
trees and depth?

2 | g 1
o O
| -
- -
o O
7p) N
w ¢
o . o
> >
Number of Trees Maximum Depth
A > i
> $)
O -
; 2
©
®© 2
-

>

Maximum Depth

>

Number of Trees
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¢ \Ve synthesized 1000 BDT models to find out!

Exercise 1 - mini quiz

700000 1 max_depth n_trees
2 50 700000 -
600000 - 3 181 — 100
— — 150 600000 -
500000 4 —— 3 16 4 —— 200
— 0 —_— 250 500000 -
400000{ — 7 =
- — 8 = 14 1 | 400000 -
= o =
300000 - 8
300000 -
12 -
10 A
100000 A 100000 -
0 1 8 - 0 -
0 50 100 150 200 250 300 2 3 5 8 0 100002000030000 4000050000 6000070000
n_trees max_depth n_nodes
20.0 max_depth 20.0 1 n_trees 20.0 - \V
2 50
17.5 A 3 17.5 9 —— 100 17.5 A
— 4 - 150
15.0 - — 3 15.0 { — 200 15.0 -
—_— 0 —_— 250
i e i i
- 12.5 - 12.5 - 12.5
(@) — 8 U U
c c c
L Q Q
‘© 10.0 - ‘© 10.0 - ‘© 10.0 -
7.5 4 7.5 A 7.5 1
5.0 A 5.0 A 5.0 A
2.5 1 2.5 2.5
0 50 100 150 200 250 300 2 3 - 5 6 7 8 0 100002000030000 4000050000 6000070000
n_trees max_depth n_nodes
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Section 1 summary

¢ \We've discussed Boosted Decision Trees (BDTs) and how they work algorithmically
¢ \We've discussed FPGAs and their features that make them suitable for high performance computation
¢ \\e’ve discussed the conifer library for BDTs in FPGASs

- How the inference algorithm is designed for low latency and high throughput - ‘inverting the problem’

- We looked at how that’s written in HLS

- We looked at how that HLS synthesizes to the intended design
e Some useful guiding principles:

- Think about how the problem should map onto parallel and pipelined logic before writing code

- That said sometimes with HLS it’s easier to just write the code and see what happens

- Think ‘oranchless’: the logic is always doing something, but sometimes you don’t use its result

e Next we will get a first hands on with conifer

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Exercise 1

e Conifer conversion and HLS walkthrough

e Clone the GitHub repository and work through notebook part 1
—git clone https://github.com/thesps/conifer—-tutorial

- If you go through it fast, try changing things like training a model with a different size (humber of trees, maximum depth)

e Return for a summary...

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPGAs, HLS, and Boosted Decision Trees with

/> Conifer

Section 2




VHDL

e conifer also has a hand-written VHDL 2;Eigﬁfion(®) <= true; —— the root node is always active
implementation for i in 1 to nNodes-1 generate
LeftChild:
e \\e won’t use it extensively today but it can if i = iChildLeft(iParent(i)) generate
be interesting to compare side-by-side the process(clk)
HLS with the VHDL begin

if rising_edge(clk) then
activation(i) <= comparisonPipe(depth(1i)) (1Parent(1))

e Notebook part 1b will walk you through it and activation(iParent(i)):
end 1f;
¢ [0 the right is the VHDL version of the tree end process;
traversal that we previously saw in HLS end generate LeftChild;
RightChild:
e The main difference is that we have to do if i = iChildRight(iParent(i)) generate
the scheduling of operations to clock cycles Eggiﬁss (clk)
ourselves in VHDL if rising_edge(clk) then
activation(i) <= (not comparisonPipe(depth(1i)) (i1Parent(1)))
- Each ‘if rising_edge(clk) then’ registers a and activation(iParent(i)):
signal end 1if;
end process;
- It can be very unintuitive - the latency of this end generate RightChild;
section of code depends on the maximum end generate GenAct;

depth of the tree
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Building accelerators

00

e \Ve can target Xilinx FPGAs as accelerators using Vitis

¢ \\/e need to add interfaces for the data I/O

e Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host

Sk

— card — host

s¥32ch FReCET
Egfiz: RoDEEA
goOUOD DOODDD

e After synthesizing our block with Vitis HLS, we run Vitis by
iINnvoking v++ to ‘link’ our design

e Under-the-hood it runs Vivado for full Place and Route

void times 2(int N, intx x, intx y){
#pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
#pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int i = 0; i < N; i++){

#pragma hls pipeline
y[i]l = x[1i] * 2;
s

}
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Building accelerators

e \Ve can target Xilinx FPGAs as accelerators using Vitis
¢ \Ve need to add interfaces for the data /O

e Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host I
— card — host

e After synthesizing our block with Vitis HLS, we run Vitis by
iINnvoking v++ to ‘link’ our design

.......
Y3

e Under-the-hood it runs Vivado for full Place and Route

E
FaE=—=

X1Y2

void times 2(int N, intx x, intx y){
#pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
#pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int 1 = 0; i < N; i++){
#pragma hls pipeline
yli] = x[i] x 2;

Y0

}
}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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Building accelerators

¢ |n conifer we add a section to the
configuration to specify the target FPGA
and some settings

- An important one is the data type of the
data on the bus

- The default is T loat, cast to ap_fixed
in FPGA

e conifer adds some HLS dressing to read/
write data and execute inference in a
variable bound loop (like Alveo example)

27/11/2023

void copy_input(int n, accelerator_input_tx x_in, input_arr_t x_int){
for(int i = 0; i < n_features; i++){
x_int[i] = x_in[n_featuresxn + i];
}

}

void copy output(int n, score_arr_t score_int, accelerator_output tx score_ou
for(int 1 = @; i < BDT::fn_classes(n_classes); i++){
score_out[BDT::fn_classes(n_classes)*n + i] = score_int[i];
+

}

void myproject accelerator(int N, int& n_f, int& n_c, accelerator_input tx X,
#pragma HLS interface mode=m_axi port=x offset slave bundle=gmem0
#pragma HLS interface mode=m_ax1i port=score offset=slave bundle=gmem@
#pragma HLS interface mode=s_axilite port=N
#pragma HLS interface mode=s_axilite port=n_f
#pragma HLS interface mode=s_axilite port=n_c
n_f = n_features;

n c = BDT::fn _classes(n_classes);
for(int n = @; n < N; n++){
#pragma HLS pipeline
input_arr_t x_int;
score_arr_t score_int;
copy_input(n, x, x_int);
bdt.decision function(x_int, score_int);
copy_output(n, score_int, score);
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Forest Processing Unit

e So far we looked at ‘static’ BDT evaluation
- One trained model = one HLS function = one IP — one bitfile

- S0 if the model changes at all, we need to redo everything — takes hours!
¢ |n next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU)

e |t's still Implemented with HLS, so will be a first look at going away from fixed-latency, fixed-function types of designs using
HLS

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPU Design

¢ \We would like a base design that can perform inference of ~any BDT model afterwards (within some [imits)
e And we would like to take advantage of the FPGA to get good performance (fast inference)
e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

¢ Use a data representation like we already used, and map to BRAMSs

- Many independent small memories

e Store one node at one address, child indices are pointers to other addresses

Tree Engine Tree:
1ndex : [ 0O, 1, 2, 3, 4,
children left = [ 1, 3, 5, -2, -2,
Inference children right : [ 2, 4, 6, -2, =2,
Logic parent . [ -1, 0, O, 1, 1,
feature : [ 4, 7, 1, -2, -2,
threshold [ 7, 2, S, -2, =2,
value : [-1, -1, -1, 0.5, 0.4,
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FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

e [0 perform inference of a model on some data we need to:
- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e Question: what would be the pipeline initiation interval of this loop®?

Tree Engine

void TreeEngine(T XINVARS], DecisionNode nodes [NNODES], U& y)A{
#pragma HLS pipeline
ap_int<ADDRBITS> i = 0;
auto node = nodes[i];
node_loop : while(!node.is_leaf){
#pragma HLS pipeline
— i = X[node.feature] <= node.threshold ?
node.child_left : node.child right;
node = nodes[i];

}
Yy = node.score;

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPU Design

e l[dea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

e [0 perform inference of a model on some data we need to:
- Read the next node

- Compare the appropriate feature with the threshold

- (Get the pointer to the next node

e Question: what would be the pipeline initiation interval of this loop®?

Tree Engine

p——— e e t———— p———— p——— e p——— +
Latency (cycles) Iteration| Initiation Interval Trip
Loop Name min | max Latency achieved | target Count| Pipelined

Inference — node_loop 7| ? 3 3 1 ? yes
Logic e +————— t——————— e — N —— PE— I +
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FPU Design

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
e Put as many Iree Engines as will fit in the FPGA

e Number of Tree Engines will constrain the model size that fits

Tree Engine Tree Engine Tree Engine Tree Engine

Inference Inference Inference Inference
Logic Logic Logic . Logic

Aggregator

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPU Design

¢ ldea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
e Put as many Iree Engines as will fit in the FPGA

e Number of Tree Engines will constrain the model size that fits

U y_acc = 0;
for(int i = 0; i < NTE; i++){
#pragma HLS unroll
Uy 1= 20,
TreeEngine(X, nodes[i], y_1i);
y_acc += vy _1;

}

27/11/2023 Conifer: BDTs on FPGASs - Sioni Summers
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FPU System Design

e Putting it together

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do

¢ Define the node memories as static to keep the data in between function calls

- Load nodes once, perform inference later whenever (multiple times)

- Later load new nodes for a different model..

e This code is a simplified view of that:

void fpu_top level(intx X, intx y, int instruction, DecisionNodex nodes)q
#pragma 1interface ..
static DecisionNode nodes_internal[NTE] [NNODES];
#pragma HLS array_partition variable=nodes_int dim=1
if(instruction == 0){
load nodes(nodes, nodes internal);

s

if(instruction == 1){
decision_function(X, y);

s

}
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FPU Floorplan

e FPU with 200 Tree Engines in Alveo U50

- Each TE is highlighted in colour (with a repeating cycle)
e BRAMSs for nodes are in columns

* | ogic near BRAMs is TE inference logic
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FPU Floorplan

e FPU with 100 Tree Engines in pyng-z2
- Each TE is highlighted in colour (with a repeating cycle) | :
e BRAMSs for nodes are in columns

* | ogic near BRAMs is TE inference logic
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Section 2 summary

¢ \We’ve looked at some steps beyond the first model-specific HLS
e Hand-written VHDL implementation of the same code
e Building accelerators from the model-specific HLS
e Designing reconfigurable architectures with HLS - the Forest Processing Unit
- A design where the specific BDT model is unknown at build time, and loaded later as data
e Next we will try these three things
e Note: in the exercises we will run some ‘accelerators’
- Probably in practise they will actually be ‘decelerators’

- There are some examples where they give a real speed up, but it typically requires a large model and lots of data (batch size)
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Exercise 2

e Part 2a : building a static accelerator (Model-specific HLS — bitfile = runtime)
- Will take around 1 hour of build time

e Part 2b: FPU hands on (straight to inference after downloading the bitfile)
- Need to share access to the FPGA cards so don’t all try this at once

e Part 1b: If waiting for a synthesis or access to an Alveo try this VHDL notebook
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Summary

¢ \\Ve have looked in detail at the conifer package for BDT inference on FPGAS
e \\We've gone through the different implementations and learned some more about HLS and FPGA programming

e This afternoon we will look at his4dml for NNs on FPGAs
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