
FPGAs, HLS, and Boosted Decision Trees with

Sioni Summers
sioni@cern.ch

sioni.web.cern.ch

mailto:sioni@cern.ch
http://sioni.web.cern.ch

FPGAs, HLS, and Boosted Decision Trees with

Section 1

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Introduction
• Boosted Decision Trees (BDTs) or Decision Forests are a Machine Learning method to make predictions from data

• Conifer is a Python library for converting BDTs to FPGAs for fast inference

- Different implementations for different use cases

• In this session we will:

- Learn how BDTs work for training and inference

- Learn three ways how BDT inference is implemented for FPGAs in conifer

- Learn how to use conifer to deploy BDTs on FPGAs

• The aim is to both learn how to use conifer, and use it to study more about HLS and FPGA implementations

• Links, references:

- Conifer GitHub repository: https://github.com/thesps/conifer

- Conifer website (docs and downloads): https://ssummers.web.cern.ch/conifer/

- Paper: Fast Inference of Boosted Decision Trees in FPGAs for particle physics

3

https://github.com/thesps/conifer
https://ssummers.web.cern.ch/conifer/
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026

Low Latency Case Study - Sioni Summers21/2/23

About me
• PhD in HEP from Imperial College London

• PhD Thesis: “Applications of FPGAs to triggering in particle physics”

• Recently Senior Fellow, now Applied Physicist at CERN working on Level 1 Trigger Upgrade for CMS

• Where we want to do complicated processing very fast on FPGAs and use HLS extensively

• I’ve mostly worked on designing and implementing detector reconstruction algorithms for Level 1 Trigger

• Track & vertex reconstruction, particle flow, jets

• Also using Machine Learning in the triggers on FPGAs with low latency

• hls4ml and conifer both as a developer and user

4

Low Latency Case Study - Sioni Summers21/2/23

Quick ML Introduction
• Using XGBoost’s Elements of Supervised Learning Introduction

• Train a model on training data to predict target variable y from features x

• y = f(Θ, x) model parameters Θ

• Train to find best parameters according to an objective function

• obj(Θ) = L(Θ) + Ω(Θ) Loss function L, Regularization Ω

• Supervised learning trains on labelled data so we can evaluate some metric of prediction quality

• e.g. mean squared error L(Θ) =𝛴(yi - ŷi)² where yi are our truth labels and ŷi are the model predictions

5

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Low Latency Case Study - Sioni Summers21/2/23

Quick ML Introduction
• Using XGBoost’s Elements of Supervised Learning Introduction

• Train a model on training data to predict target variable y from features x

• A Boosted Decision Tree model is an ensemble of Decision Trees

• The splits of each Decision Tree are chosen based on the training objective function

• In an ensemble each learner (tree) is relatively weak, but the aggregation is a stronger prediction

6

e.g. predict whether individuals
will like a computer game

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Low Latency Case Study - Sioni Summers21/2/23

BDTs in HEP
• BDTs have been used for a long time in HEP

- You may be familiar with ROOT’s TMVA

• They have fallen in popularity compared to Neural Networks that can be
extremely powerful on lower level data

• Still some papers coming out in 2023 about their use in HEP!

• They remain useful and popular for some specific reasons:

- High level / tabular data

- Easy to get started

- Easy(ish) to interpret

- Robust (against overfitting, against irrelevant features)

- Relatively inexpensive to train and then make predictions

7

https://arxiv.org/pdf/2109.11815.pdf
https://arxiv.org/pdf/2309.13111.pdf
https://arxiv.org/pdf/2310.13057.pdf

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

8

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [x0, x1, x2, x3, x4, x5, x6, x7]

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

9

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [-, 12, -, -, 3, -, -, 5]

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

10

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

x = [-, 12, -, -, 3, -, -, 5]

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result

• The value of the terminal leaf is the tree prediction

11

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

BDT Inference
• Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction

• Apply the inverse of the training loss function to obtain class probabilities

12

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPGAs
• Some characteristics of FPGAs to keep in mind…

• These were taught also by Giovanni, but it’s okay to hear
things twice

• Two types of parallelism: resource and pipeline

- Resource parallelism enables us to do different tasks
simultaneously to reach low latency

- Pipeline parallelism enables us to do the same task on
different data at high throughput

• In the automotive factory the many robots are resource
parallelism and the conveyor belt is pipelining

• High performance requires use of both types

13

Low Latency Case Study - Sioni Summers21/2/23

Loop Analysis
• With FPGAs we can take advantage of pipeline processing

• We need to work to keep the pipeline filled with data

• Depends on the loops of our algorithm and their inter-dependencies

• First some terminology:

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent
executions of a process

- How often to trains depart the station?

- ‘Latency’ : delay between start of execution of a process, and output of
results

- How long does it take to get from A to B?

14

Genève Cornavin Milano Centrale

Interval

Latency

Interval

Latency

Low Latency Case Study - Sioni Summers21/2/23

Loop Analysis
• Loops can have dependencies that impacts scheduling, unrolling, and interval

• Consider this loop executed sequentially

- The loop has Latency 3 cycles, Interval 3 cycles

• This loop has no iteration dependence (iteration i does not depend on any other iteration)

- It can be pipelined: loop has Latency 3 cycles, Interval 1 cycle

• If all of a[i] can be read simultaneously (e.g. it’s in FPGA registers not BRAMs), the loop can be unrolled

15

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

Low Latency Case Study - Sioni Summers21/2/23

Loop Analysis
• Some loops have dependencies (loop-carried dependence)

• We can’t pipeline or unroll this loop since the read of iteration i depends on the write of iteration i-1

• For best performance with parallel architectures, we need to understand and optimise our loops

- Defines how we can distribute loop iterations across different processing units

- Merge loops where possible

- Break dependencies by reordering loops

16

for(i = n; i > 0; i--)
 a[i] = a[i-1];

Read Write Read Write Read Write Read Write Read Write

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point arithmetic
• Introduced by Giovanni on Monday

• Reminder: floating-point is like scientific notation

17

1.23456 x 10⁵123456

integer scientific notation

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point arithmetic
• Introduced by Giovanni on Monday

• Reminder: floating-point is like scientific notation

18

1.2345600 x 100050000123456

10 digit integer
scientific notation
8 digit mantissa
3 digit exponent

0011010111 1.00110011 x 21011

10 bit integer floating point
8 bit mantissa
4 bit exponent

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point arithmetic
• Introduced by Giovanni on Monday

• Reminder: floating-point is like scientific notation

• With floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change

- Have constant relative precision

• With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

- Have constant absolute precision

19

1.00110011 x 21011

floating point
8 bit mantissa
4 bit exponent

01101.0011
fixed point
9 bit width

5 bit integer
(4 bit fraction)

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point arithmetic

20

1.00110011 x 21011

floating point
8 bit mantissa
4 bit exponent

01101.0011
fixed point
9 bit width

5 bit integer
(4 bit fraction)

• Introduced by Giovanni on Monday

• Reminder: floating-point is like scientific notation

• With floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change

• With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

0011010111

10 bit integer

Cheap & fast arithmetic in hardware

Expressiveness / Interpretability

High dynamic range
Expensive & slow in hardware

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point for BDTs
• When we train a BDT our data, thresholds, and scores have some real numerical values

• We need to choose what data type to use for our model - in FPGAs we have freedome

• We could use floating point and not waste any brain cycles

- But it will always be more expensive than using fixed point

• Perform a numerical analysis of the model and see which range/precision is required

• The first interactive exercise exposes how to control these in conifer

• Note: this not only applies to BDTs!

- Any algorithm that performs many arithmetic operations can benefit from a numerical analysis and choice of fixed-point types!

21

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

CPU

FPGA

library

• conifer is a Python package, published to PyPI

- pip install conifer

• It has a structure like a compiler

- Converters / frontends for different BDT training libraries

- Internal Representation

- Backends for different compute targets

- Three FPGA targets that we’ll go through today

- CPU targets for reference / emulation rather than high
performance

22

VHDL

FPU

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

• Improving electron reconstruction in Correlator Layer 1 of CMS Phase 2 L1T

• Predict whether a pair of {track, calorimeter cluster} are consistent with both
originating from an electron

• Full e/𝛾 algorithm has 10 BDT copies, plus other logic (e.g. dR)

- Total consumes 3.1% VU13P LUTs, 18 cycles latency @ 180 MHz (100 ns)

• CMS-DP-2023-047

Example use case

23

BDT
gain

https://cds.cern.ch/record/2868782?ln=en

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation

24

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves

3 4 5 6

1 2

0

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation

25

3 4 5 6

1 2

0

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation

26

3 4 5 6

1 2

0

• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
• For node ‘1’:

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation
• For a tree: find which leaf is reached given a data sample x
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
• For leaf node ‘3’:

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
• For node ‘1’:

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’
• For node ‘0’:

- The decision path always passes through the root node

27

3 4 5 6

1 2

0

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation
• For a tree: find which leaf is reached given a data sample x

• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves

• We can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously

• We can pipeline this over different data: each node can do a comparison on new data with II=1

• For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE

• Concatenate the boolean for each leaf node → select the value corresponding to the leaf

28

3 4 5 6

1 2

0depth 0

depth 1

depth 2

Addr Data
0 S0
1 S1

2 S2

3 S3

Tree score

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Tree Representation
• Before looking at the code, a note about data representation

• We represent trees “scikit-learn”-style ie flat

- No representation of individual nodes

- Each node variable (threshold, feature, value) is a tree-level array

- A left/right child index array points to the children for each node

• Some special values: ‘-2’ typically means leaf (e.g. child index -2, feature -2)

29

3
0.5

4
0.4

5
-0.5

6
-1

1
x7 <= 2

2
x1 <= 9

0
x4 <= 7

Tree:
 index : [0, 1, 2, 3, 4, 5, 6]
 children_left : [1, 3, 5, -2, -2, -2, -2]
 children_right : [2, 4, 6, -2, -2, -2, -2]
 parent : [-1, 0, 0, 1, 1, 2, 2]
 feature : [4, 7, 1, -2, -2, -2, -2]
 threshold : [7, 2, 9, -2, -2, -2, -2]
 value : [-1, -1, -1, 0.5, 0.4, -0.5, -1]

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

HLS Code 1
• Perform all the comparisons simultaneously: unroll the loop

• Store boolean results in a fully-partitioned array “comparison”

30

 // Execute all comparisons
 Compare: for(int i = 0; i < n_nodes; i++){
 #pragma HLS unroll
 // Only non-leaf nodes do comparisons
 // negative values mean is a leaf (sklearn: -2)
 if(feature[i] >= 0){
 comparison[i] = x[feature[i]] <= threshold[i];
 }else{
 comparison[i] = true;
 }
 }

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

HLS Code 2

31

 // Determine node activity for all nodes
 int iLeaf = 0;
 Activate: for(int i = 0; i < n_nodes; i++){
 #pragma HLS unroll
 // Root node is always active
 if(i == 0){
 activation[i] = true;
 }else{
 // If this node is the left child of its parent
 if(i == children_left[parent[i]]){
 activation[i] = comparison[parent[i]] && activation[parent[i]];
 }else{ // Else it is the right child
 activation[i] = !comparison[parent[i]] && activation[parent[i]];
 }
 }
 // Skim off the leaves
 if(children_left[i] == -1){ // is a leaf
 activation_leaf[iLeaf] = activation[i];
 value_leaf[iLeaf] = value[i];
 iLeaf++;
 }
 }

• Compute the node activation (true if decision path traverses node, otherwise false)

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

HLS Code

32

 for(int i = 0; i < n_leaves; i++){
 if(activation_leaf[i]){
 return value_leaf[i];
 }
 }

• Compute the node activation (true if decision path traverses node, otherwise false)

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Scheduling - Tree
• Did we achieve what we described?

• Vitis HLS Schedule Viewer in GUI

- Tree depth = 5, some sparsity

• All comparisons in parallel at the
start

• Cascade of boolean operations

- AND, OR, XOR, NOT

• ‘Aggregate’ at end

33

x[1] <= 1.12

x[1] <= -1.37 x[2] <= 0.94

x[1] <= -2.11 x[5] <= 1.24 x[1] <= 1.53 2.04

x[7] <= -1.30 x[0] <= 0.55 x[5] <= -1.36 x[5] <= 1.77

x[8] <= -0.30 x[4] <= -0.26 x[6] <= -0.93 x[2] <= 0.47

-1.96 2.04 2.04 2.04 2.04 -0.02 2.04 1.18

x[0] <= -0.89 x[2] <= 1.71 x[8] <= -1.15 x[9] <= -0.07

1.79 0.63 -0.64 1.29 2.04 0.18 1.26 2.04

x[4] <= -0.07 x[1] <= 2.07

x[5] <= -0.86 x[9] <= 1.11 x[2] <= -1.03 x[0] <= 0.98

1.82 0.67 -0.58 1.67 2.04 0.83 2.04 1.24

t (clock cycles)

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Conifer Implementation
• For a forest: aggregate over all trees - normally summation, but can be other e.g. some quantile

• A parallel addition also uses a kind of tree: adder tree (like “pairwise reduce”)

34

Tree 0 Tree 1 Tree 2 Tree 3 Tree
N

+ + +

Tree
N-1

+

+

…

…

t

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Scheduling - Forest
• Did we achieve what we described?

• Vitis HLS Schedule Viewer in GUI

- Number of trees = 20

- Tree from previous slides is one of them

• All tree inferences performed in parallel

• Tree scores summed in pairs

• Total latency: 7 clock cycles

35

t (clock cycles)

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Resource Usage - Trees
• Each tree uses independent logic

• Resource usage depends on
structure of the tree

• Since thresholds are ‘baked in’ to
comparisons, resource usage of
each ‘>=‘ can depend on the
threshold value as well

• Can see up to factor 2 difference
in LUT usage of different trees

• Normally FFs would also be used
but this model must be too
trivial…

36

+ Detail:
 * Instance:
 +---------------------------------------+----------------------+---------+----+---+-----+-----+
 | Instance | Module | BRAM_18K| DSP| FF| LUT | URAM|
 +---------------------------------------+----------------------+---------+----+---+-----+-----+
 |scores_9_decision_function_fu_161 |decision_function | 0| 0| 0| 206| 0|
 |scores_8_decision_function_1_fu_153 |decision_function_1 | 0| 0| 0| 246| 0|
 |scores_16_decision_function_10_fu_223 |decision_function_10 | 0| 0| 0| 278| 0|
 |scores_15_decision_function_11_fu_215 |decision_function_11 | 0| 0| 0| 268| 0|
 |scores_14_decision_function_12_fu_209 |decision_function_12 | 0| 0| 0| 167| 0|
 |scores_13_decision_function_13_fu_201 |decision_function_13 | 0| 0| 0| 268| 0|
 |scores_12_decision_function_14_fu_193 |decision_function_14 | 0| 0| 0| 247| 0|
 |scores_11_decision_function_15_fu_185 |decision_function_15 | 0| 0| 0| 282| 0|
 |scores_10_decision_function_16_fu_177 |decision_function_16 | 0| 0| 0| 208| 0|
 |scores_19_decision_function_17_fu_169 |decision_function_17 | 0| 0| 0| 153| 0|
 |scores_1_decision_function_18_fu_97 |decision_function_18 | 0| 0| 0| 232| 0|
 |scores_decision_function_19_fu_89 |decision_function_19 | 0| 0| 0| 234| 0|
 |scores_7_decision_function_2_fu_145 |decision_function_2 | 0| 0| 0| 248| 0|
 |scores_6_decision_function_3_fu_137 |decision_function_3 | 0| 0| 0| 278| 0|
 |scores_5_decision_function_4_fu_129 |decision_function_4 | 0| 0| 0| 190| 0|
 |scores_4_decision_function_5_fu_121 |decision_function_5 | 0| 0| 0| 243| 0|
 |scores_3_decision_function_6_fu_113 |decision_function_6 | 0| 0| 0| 232| 0|
 |scores_2_decision_function_7_fu_105 |decision_function_7 | 0| 0| 0| 230| 0|
 |scores_18_decision_function_8_fu_235 |decision_function_8 | 0| 0| 0| 208| 0|
 |scores_17_decision_function_9_fu_229 |decision_function_9 | 0| 0| 0| 248| 0|
 +---------------------------------------+----------------------+---------+----+---+-----+-----+
 |Total | | 0| 0| 0| 4666| 0|
 +---------------------------------------+----------------------+---------+----+---+-----+-----+

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Exercise 1 - mini quiz
• Given what we now know about the implementation, how do you expect the resources and latency to vary with number of

trees and depth?

37

Number of Trees

R
es

ou
rc

es
?

Maximum Depth

R
es

ou
rc

es

?

Maximum Depth

La
te

nc
y

?

Number of Trees

La
te

nc
y

?

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Section 1 summary
• We’ve discussed Boosted Decision Trees (BDTs) and how they work algorithmically

• We’ve discussed FPGAs and their features that make them suitable for high performance computation

• We’ve discussed the conifer library for BDTs in FPGAs

- How the inference algorithm is designed for low latency and high throughput - ‘inverting the problem’

- We looked at how that’s written in HLS

- We looked at how that HLS synthesizes to the intended design

• Some useful guiding principles:

- Think about how the problem should map onto parallel and pipelined logic before writing code

- That said sometimes with HLS it’s easier to just write the code and see what happens

- Think ‘branchless’: the logic is always doing something, but sometimes you don’t use its result

• Next we will get a first hands on with conifer

38

Break

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Exercise 1
• Conifer conversion and HLS walkthrough

• Clone the GitHub repository and work through notebook part 1

- git clone https://github.com/thesps/conifer-tutorial

- If you go through it fast, try changing things like training a model with a different size (number of trees, maximum depth)

• Return for a summary…

40

FPGAs, HLS, and Boosted Decision Trees with

Section 2

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

VHDL
• conifer also has a hand-written VHDL

implementation

• We won’t use it extensively today but it can
be interesting to compare side-by-side the
HLS with the VHDL

• Notebook part 1b will walk you through it

• To the right is the VHDL version of the tree
traversal that we previously saw in HLS

• The main difference is that we have to do
the scheduling of operations to clock cycles
ourselves in VHDL

- Each ‘if rising_edge(clk) then’ registers a
signal

- It can be very unintuitive - the latency of this
section of code depends on the maximum
depth of the tree

42

 activation(0) <= true; -- the root node is always active
 GenAct:
 for i in 1 to nNodes-1 generate
 LeftChild:
 if i = iChildLeft(iParent(i)) generate
 process(clk)
 begin
 if rising_edge(clk) then
 activation(i) <= comparisonPipe(depth(i))(iParent(i))
 and activation(iParent(i));
 end if;
 end process;
 end generate LeftChild;
 RightChild:
 if i = iChildRight(iParent(i)) generate
 process(clk)
 begin
 if rising_edge(clk) then
 activation(i) <= (not comparisonPipe(depth(i))(iParent(i)))
 and activation(iParent(i));
 end if;
 end process;
 end generate RightChild;
 end generate GenAct;

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Building accelerators

43

void times_2(int N, int* x, int* y){
 #pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
 #pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int i = 0; i < N; i++){

 #pragma hls pipeline
 y[i] = x[i] * 2;
 }
}

HLS• We can target Xilinx FPGAs as accelerators using Vitis

• We need to add interfaces for the data I/O

• Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host
→ card → host

• After synthesizing our block with Vitis HLS, we run Vitis by
invoking v++ to ‘link’ our design

• Under-the-hood it runs Vivado for full Place and Route

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Building accelerators
• We can target Xilinx FPGAs as accelerators using Vitis

• We need to add interfaces for the data I/O

• Preferred way to do this is with AXI

- Then we can transfer data via Direct Memory Access (DMA) host
→ card → host

• After synthesizing our block with Vitis HLS, we run Vitis by
invoking v++ to ‘link’ our design

• Under-the-hood it runs Vivado for full Place and Route

44

void times_2(int N, int* x, int* y){
 #pragma hls interface mode=m_axi port=x offset=slave bundle=gmem
 #pragma hls interface mode=m_axi port=y offset=slave bundle=gmem

for(int i = 0; i < N; i++){

 #pragma hls pipeline
 y[i] = x[i] * 2;
 }
}

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Building accelerators
• In conifer we add a section to the

configuration to specify the target FPGA
and some settings

- An important one is the data type of the
data on the bus

- The default is float, cast to ap_fixed
in FPGA

• conifer adds some HLS dressing to read/
write data and execute inference in a
variable bound loop (like Alveo example)

45

void copy_input(int n, accelerator_input_t* x_in, input_arr_t x_int){
 for(int i = 0; i < n_features; i++){
 x_int[i] = x_in[n_features*n + i];
 }
}

void copy_output(int n, score_arr_t score_int, accelerator_output_t* score_out){
 for(int i = 0; i < BDT::fn_classes(n_classes); i++){
 score_out[BDT::fn_classes(n_classes)*n + i] = score_int[i];
 }
}

void myproject_accelerator(int N, int& n_f, int& n_c, accelerator_input_t* x, accelerator_output_t* score){
 #pragma HLS interface mode=m_axi port=x offset=slave bundle=gmem0
 #pragma HLS interface mode=m_axi port=score offset=slave bundle=gmem0
 #pragma HLS interface mode=s_axilite port=N
 #pragma HLS interface mode=s_axilite port=n_f
 #pragma HLS interface mode=s_axilite port=n_c
 n_f = n_features;
 n_c = BDT::fn_classes(n_classes);
 for(int n = 0; n < N; n++){
 #pragma HLS pipeline
 input_arr_t x_int;
 score_arr_t score_int;
 copy_input(n, x, x_int);
 bdt.decision_function(x_int, score_int);
 copy_output(n, score_int, score);
 }
}

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Forest Processing Unit
• So far we looked at ‘static’ BDT evaluation

- One trained model → one HLS function → one IP → one bitfile

- So if the model changes at all, we need to redo everything → takes hours!

• In next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU)

• It’s still implemented with HLS, so will be a first look at going away from fixed-latency, fixed-function types of designs using
HLS

46

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Design
• We would like a base design that can perform inference of ~any BDT model afterwards (within some limits)

• And we would like to take advantage of the FPGA to get good performance (fast inference)

• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

47

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• Use a data representation like we already used, and map to BRAMs

- Many independent small memories

• Store one node at one address, child indices are pointers to other addresses

48

Tree Engine

Tree
Data

Inference
Logic

Data Bus

Tree:
 index : [0, 1, 2, 3, 4, 5, 6]
 children_left : [1, 3, 5, -2, -2, -2, -2]
 children_right : [2, 4, 6, -2, -2, -2, -2]
 parent : [-1, 0, 0, 1, 1, 2, 2]
 feature : [4, 7, 1, -2, -2, -2, -2]
 threshold : [7, 2, 9, -2, -2, -2, -2]
 value : [-1, -1, -1, 0.5, 0.4, -0.5, -1]

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model

• To perform inference of a model on some data we need to:

- Read the next node

- Compare the appropriate feature with the threshold

- Get the pointer to the next node

• Question: what would be the pipeline initiation interval of this loop?

49

Tree Engine

Tree
Data

Inference
Logic

Data Bus
void TreeEngine(T X[NVARS], DecisionNode nodes[NNODES], U& y){
 #pragma HLS pipeline
 ap_int<ADDRBITS> i = 0;
 auto node = nodes[i];
 node_loop : while(!node.is_leaf){
 #pragma HLS pipeline
 i = X[node.feature] <= node.threshold ?

 node.child_left : node.child_right;
 node = nodes[i];
 }
 y = node.score;
}

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Design
• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

• Put as many Tree Engines as will fit in the FPGA

• Number of Tree Engines will constrain the model size that fits

50

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic

Tree Engine

Tree
Data

Inference
Logic…

Aggregator

Data Bus

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Design
• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model

• Put as many Tree Engines as will fit in the FPGA

• Number of Tree Engines will constrain the model size that fits

51

U y_acc = 0;
for(int i = 0; i < NTE; i++){
 #pragma HLS unroll
 U y_i = 0;
 TreeEngine(X, nodes[i], y_i);
 y_acc += y_i;
}

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU System Design
• Putting it together

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do

• Define the node memories as static to keep the data in between function calls

- Load nodes once, perform inference later whenever (multiple times)

- Later load new nodes for a different model..

• This code is a simplified view of that:

52

void fpu_top_level(int* X, int* y, int instruction, DecisionNode* nodes){
 #pragma interface …
 static DecisionNode nodes_internal[NTE][NNODES];
 #pragma HLS array_partition variable=nodes_int dim=1
 if(instruction == 0){
 load_nodes(nodes, nodes_internal);
 }
 if(instruction == 1){
 decision_function(X, y);
 }
}

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Floorplan
• FPU with 200 Tree Engines in Alveo U50

- Each TE is highlighted in colour (with a repeating cycle)

• BRAMs for nodes are in columns

• Logic near BRAMs is TE inference logic

53

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

FPU Floorplan
• FPU with 100 Tree Engines in pynq-z2

- Each TE is highlighted in colour (with a repeating cycle)

• BRAMs for nodes are in columns

• Logic near BRAMs is TE inference logic

54
BRAM column

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Section 2 summary
• We’ve looked at some steps beyond the first model-specific HLS

• Hand-written VHDL implementation of the same code

• Building accelerators from the model-specific HLS

• Designing reconfigurable architectures with HLS - the Forest Processing Unit

- A design where the specific BDT model is unknown at build time, and loaded later as data

• Next we will try these three things

• Note: in the exercises we will run some ‘accelerators’

- Probably in practise they will actually be ‘decelerators’

- There are some examples where they give a real speed up, but it typically requires a large model and lots of data (batch size)

55

Break

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Exercise 2
• Part 2a : building a static accelerator (Model-specific HLS → bitfile → runtime)

- Will take around 1 hour of build time

• Part 2b: FPU hands on (straight to inference after downloading the bitfile)

- Need to share access to the FPGA cards so don’t all try this at once

• Part 1b: if waiting for a synthesis or access to an Alveo try this VHDL notebook

57

Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

Summary
• We have looked in detail at the conifer package for BDT inference on FPGAs

• We’ve gone through the different implementations and learned some more about HLS and FPGA programming

• This afternoon we will look at hls4ml for NNs on FPGAs

58

