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Introduction
• Boosted Decision Trees (BDTs) or Decision Forests are a Machine Learning method to make predictions from data 

• Conifer is a Python library for converting BDTs to FPGAs for fast inference 

- Different implementations for different use cases 

• In this session we will: 

- Learn how BDTs work for training and inference 

- Learn three ways how BDT inference is implemented for FPGAs in conifer 

- Learn how to use conifer to deploy BDTs on FPGAs 

• The aim is to both learn how to use conifer, and use it to study more about HLS and FPGA implementations 

• Links, references: 

- Conifer GitHub repository: https://github.com/thesps/conifer 

- Conifer website (docs and downloads): https://ssummers.web.cern.ch/conifer/  

-  Paper: Fast Inference of Boosted Decision Trees in FPGAs for particle physics
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https://github.com/thesps/conifer
https://ssummers.web.cern.ch/conifer/
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About me
• PhD in HEP from Imperial College London 

• PhD Thesis: “Applications of FPGAs to triggering in particle physics” 

• Recently Senior Fellow, now Applied Physicist at CERN working on Level 1 Trigger Upgrade for CMS  

• Where we want to do complicated processing very fast on FPGAs and use HLS extensively 

• I’ve mostly worked on designing and implementing detector reconstruction algorithms for Level 1 Trigger 

• Track & vertex reconstruction, particle flow, jets 

• Also using Machine Learning in the triggers on FPGAs with low latency 

•  hls4ml and conifer both as a developer and user
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Quick ML Introduction
• Using XGBoost’s Elements of Supervised Learning Introduction  

• Train a model on training data to predict target variable y from features x 

• y = f(Θ, x)                 model parameters Θ 

• Train to find best parameters according to an objective function 

• obj(Θ) = L(Θ) + Ω(Θ)                      Loss function L, Regularization Ω 

• Supervised learning trains on labelled data so we can evaluate some metric of prediction quality 

• e.g. mean squared error L(Θ) =𝛴(yi - ŷi)²      where yi are our truth labels and ŷi are the model predictions
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Quick ML Introduction
• Using XGBoost’s Elements of Supervised Learning Introduction  

• Train a model on training data to predict target variable y from features x 

• A Boosted Decision Tree model is an ensemble of Decision Trees 

• The splits of each Decision Tree are chosen based on the training objective function 

• In an ensemble each learner (tree) is relatively weak, but the aggregation is a stronger prediction
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e.g. predict whether individuals 
will like a computer game

https://xgboost.readthedocs.io/en/stable/tutorials/model.html
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BDTs in HEP
• BDTs have been used for a long time in HEP 

- You may be familiar with ROOT’s TMVA 

• They have fallen in popularity compared to Neural Networks that can be 
extremely powerful on lower level data 

• Still some papers coming out in 2023 about their use in HEP! 

• They remain useful and popular for some specific reasons: 

- High level / tabular data 

- Easy to get started 

- Easy(ish) to interpret 

- Robust (against overfitting, against irrelevant features) 

- Relatively inexpensive to train and then make predictions
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BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result
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BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result
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BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result 

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result
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BDT Inference
• Start at the root node - compare the selected feature with the threshold, go left or right depending on result 

• Continue until reaching leaf - compare the selected feature with the threshold, go left or right depending on result 

• The value of the terminal leaf is the tree prediction
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BDT Inference
• Repeat the same procedure for every tree in the ensemble, sum up the tree scores for the BDT prediction 

• Apply the inverse of the training loss function to obtain class probabilities
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FPGAs
• Some characteristics of FPGAs to keep in mind… 

• These were taught also by Giovanni, but it’s okay to hear 
things twice 

• Two types of parallelism: resource and pipeline 

- Resource parallelism enables us to do different tasks 
simultaneously to reach low latency 

- Pipeline parallelism enables us to do the same task on 
different data at high throughput 

• In the automotive factory the many robots are resource 
parallelism and the conveyor belt is pipelining 

• High performance requires use of both types
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Loop Analysis
• With FPGAs we can take advantage of pipeline processing 

• We need to work to keep the pipeline filled with data 

• Depends on the loops of our algorithm and their inter-dependencies 

• First some terminology: 

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent 
executions of a process 

- How often to trains depart the station? 

- ‘Latency’ : delay between start of execution of a process, and output of 
results 

- How long does it take to get from A to B?
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Loop Analysis
• Loops can have dependencies that impacts scheduling, unrolling, and interval 

• Consider this loop executed sequentially 

- The loop has Latency 3 cycles, Interval 3 cycles 

• This loop has no iteration dependence (iteration i does not depend on any other iteration) 

- It can be pipelined: loop has Latency 3 cycles, Interval 1 cycle 

• If all of a[i] can be read simultaneously (e.g. it’s in FPGA registers not BRAMs), the loop can be unrolled
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for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;
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for(i = 0; i < 3; i++) 
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Loop Analysis
• Some loops have dependencies (loop-carried dependence) 

• We can’t pipeline or unroll this loop since the read of iteration i depends on the write of iteration i-1 

• For best performance with parallel architectures, we need to understand and optimise our loops 

- Defines how we can distribute loop iterations across different processing units 

- Merge loops where possible 

- Break dependencies by reordering loops
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for(i = n; i > 0; i--) 
    a[i] = a[i-1];
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fixed-point arithmetic
• Introduced by Giovanni on Monday 

• Reminder: floating-point is like scientific notation
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fixed-point arithmetic
• Introduced by Giovanni on Monday 

• Reminder: floating-point is like scientific notation
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1.2345600 x 100050000123456

10 digit integer
scientific notation 
8 digit mantissa 
3 digit exponent

0011010111 1.00110011 x 21011

10 bit integer floating point 
8 bit mantissa 
4 bit exponent
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fixed-point arithmetic
• Introduced by Giovanni on Monday 

• Reminder: floating-point is like scientific notation 

• With floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change 

- Have constant relative precision 

• With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change 

- Have constant absolute precision
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1.00110011 x 21011

floating point 
8 bit mantissa 
4 bit exponent

01101.0011
fixed point 
9 bit width 

5 bit integer 
(4 bit fraction)



Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point arithmetic
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1.00110011 x 21011

floating point 
8 bit mantissa 
4 bit exponent

01101.0011
fixed point 
9 bit width 

5 bit integer 
(4 bit fraction)

• Introduced by Giovanni on Monday 

• Reminder: floating-point is like scientific notation 

• With floating point the bitwidth of the mantissa and exponent are fixed. The value of the mantissa and exponent can change 

• With fixed point the bitwidth is fixed. The value of the exponent is fixed (and implicit). The value of the mantissa can change

0011010111

10 bit integer

Cheap & fast arithmetic in hardware

Expressiveness / Interpretability

High dynamic range 
Expensive & slow in hardware



Conifer: BDTs on FPGAs - Sioni Summers27/11/2023

fixed-point for BDTs
• When we train a BDT our data, thresholds, and scores have some real numerical values 

• We need to choose what data type to use for our model - in FPGAs we have freedome 

• We could use floating point and not waste any brain cycles 

- But it will always be more expensive than using fixed point 

• Perform a numerical analysis of the model and see which range/precision is required 

• The first interactive exercise exposes how to control these in conifer 

• Note: this not only applies to BDTs! 

- Any algorithm that performs many arithmetic operations can benefit from a numerical analysis and choice of fixed-point types!
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CPU

FPGA

library

• conifer is a Python package, published to PyPI 

- pip install conifer 

• It has a structure like a compiler 

- Converters / frontends for different BDT training libraries 

- Internal Representation 

- Backends for different compute targets 

- Three FPGA targets that we’ll go through today 

- CPU targets for reference / emulation rather than high 
performance

22
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• Improving electron reconstruction in Correlator Layer 1 of CMS Phase 2 L1T 

• Predict whether a pair of {track, calorimeter cluster} are consistent with both 
originating from an electron 

• Full e/𝛾 algorithm has 10 BDT copies, plus other logic (e.g. dR) 

- Total consumes 3.1% VU13P LUTs, 18 cycles latency @ 180 MHz (100 ns) 

• CMS-DP-2023-047

Example use case
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Conifer Implementation

24

• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves
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Conifer Implementation
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• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’
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Conifer Implementation
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• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’ 
• For node ‘1’: 

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’
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Conifer Implementation
• For a tree: find which leaf is reached given a data sample x 
• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 
• For leaf node ‘3’: 

- The decision path reaches ‘3’ if: the decision path reached ‘1’ AND the comparison at ‘1’ goes ‘left’ 
• For node ‘1’: 

- The decision path reaches ‘1’ if: the decision path reached ‘0’ AND the comparison at ‘0’ goes ‘left’ 
• For node ‘0’:  

- The decision path always passes through the root node

27
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Conifer Implementation
• For a tree: find which leaf is reached given a data sample x 

• ‘Invert’ the problem: for each node ask “does the decision path reach this node?” starting at the leaves 

• We can parallelise this over paths by brute force: evaluate all nodes at the same depth simultaneously 

• We can pipeline this over different data: each node can do a comparison on new data with II=1 

• For each leaf node we have a boolean: TRUE if the decision path reaches leaf, otherwise FALSE 

• Concatenate the boolean for each leaf node → select the value corresponding to the leaf

28
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Tree Representation
• Before looking at the code, a note about data representation 

• We represent trees “scikit-learn”-style ie flat 

- No representation of individual nodes 

- Each node variable (threshold, feature, value) is a tree-level array 

- A left/right child index array points to the children for each node 

• Some special values: ‘-2’ typically means leaf (e.g. child index -2, feature -2)
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      children_left  : [ 1,  3,  5,  -2,  -2,   -2, -2] 
      children_right : [ 2,  4,  6,  -2,  -2,   -2, -2] 
      parent         : [ -1, 0,  0,   1,   1,    2,  2] 
      feature        : [ 4,  7,  1,  -2,  -2,   -2, -2] 
      threshold      : [ 7,  2,  9,  -2,  -2,   -2, -2] 
      value          : [-1, -1, -1, 0.5, 0.4, -0.5, -1]
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HLS Code 1
• Perform all the comparisons simultaneously: unroll the loop 

• Store boolean results in a fully-partitioned array “comparison”
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    // Execute all comparisons 
    Compare: for(int i = 0; i < n_nodes; i++){ 
      #pragma HLS unroll 
      // Only non-leaf nodes do comparisons 
      // negative values mean is a leaf (sklearn: -2) 
      if(feature[i] >= 0){ 
        comparison[i] = x[feature[i]] <= threshold[i]; 
      }else{ 
        comparison[i] = true; 
      } 
    }
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HLS Code 2

31

    // Determine node activity for all nodes 
    int iLeaf = 0; 
    Activate: for(int i = 0; i < n_nodes; i++){ 
      #pragma HLS unroll 
      // Root node is always active 
      if(i == 0){ 
        activation[i] = true; 
      }else{ 
        // If this node is the left child of its parent 
        if(i == children_left[parent[i]]){ 
          activation[i] = comparison[parent[i]] && activation[parent[i]]; 
        }else{ // Else it is the right child 
          activation[i] = !comparison[parent[i]] && activation[parent[i]]; 
        } 
      } 
      // Skim off the leaves 
      if(children_left[i] == -1){ // is a leaf 
        activation_leaf[iLeaf] = activation[i]; 
        value_leaf[iLeaf] = value[i]; 
        iLeaf++; 
      } 
    }

• Compute the node activation (true if decision path traverses node, otherwise false)
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HLS Code

32

   for(int i = 0; i < n_leaves; i++){ 
      if(activation_leaf[i]){ 
        return value_leaf[i]; 
      } 
    }

• Compute the node activation (true if decision path traverses node, otherwise false)
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Scheduling - Tree
• Did we achieve what we described? 

• Vitis HLS Schedule Viewer in GUI 

- Tree depth = 5, some sparsity 

• All comparisons in parallel at the 
start 

• Cascade of boolean operations 

- AND, OR, XOR, NOT 

• ‘Aggregate’ at end
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Conifer Implementation
• For a forest: aggregate over all trees - normally summation, but can be other e.g. some quantile 

• A parallel addition also uses a kind of tree: adder tree (like “pairwise reduce”)
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Scheduling - Forest
• Did we achieve what we described? 

• Vitis HLS Schedule Viewer in GUI 

- Number of trees = 20 

- Tree from previous slides is one of them 

• All tree inferences performed in parallel 

• Tree scores summed in pairs 

• Total latency: 7 clock cycles 
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Resource Usage - Trees
• Each tree uses independent logic 

• Resource usage depends on 
structure of the tree 

• Since thresholds are ‘baked in’ to 
comparisons, resource usage of 
each ‘>=‘ can depend on the 
threshold value as well 

• Can see up to factor 2 difference 
in LUT usage of different trees 

• Normally FFs would also be used 
but this model must be too 
trivial…
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+ Detail:  
    * Instance:  
    +---------------------------------------+----------------------+---------+----+---+-----+-----+ 
    |                Instance               |        Module        | BRAM_18K| DSP| FF| LUT | URAM| 
    +---------------------------------------+----------------------+---------+----+---+-----+-----+ 
    |scores_9_decision_function_fu_161      |decision_function     |        0|   0|  0|  206|    0| 
    |scores_8_decision_function_1_fu_153    |decision_function_1   |        0|   0|  0|  246|    0| 
    |scores_16_decision_function_10_fu_223  |decision_function_10  |        0|   0|  0|  278|    0| 
    |scores_15_decision_function_11_fu_215  |decision_function_11  |        0|   0|  0|  268|    0| 
    |scores_14_decision_function_12_fu_209  |decision_function_12  |        0|   0|  0|  167|    0| 
    |scores_13_decision_function_13_fu_201  |decision_function_13  |        0|   0|  0|  268|    0| 
    |scores_12_decision_function_14_fu_193  |decision_function_14  |        0|   0|  0|  247|    0| 
    |scores_11_decision_function_15_fu_185  |decision_function_15  |        0|   0|  0|  282|    0| 
    |scores_10_decision_function_16_fu_177  |decision_function_16  |        0|   0|  0|  208|    0| 
    |scores_19_decision_function_17_fu_169  |decision_function_17  |        0|   0|  0|  153|    0| 
    |scores_1_decision_function_18_fu_97    |decision_function_18  |        0|   0|  0|  232|    0| 
    |scores_decision_function_19_fu_89      |decision_function_19  |        0|   0|  0|  234|    0| 
    |scores_7_decision_function_2_fu_145    |decision_function_2   |        0|   0|  0|  248|    0| 
    |scores_6_decision_function_3_fu_137    |decision_function_3   |        0|   0|  0|  278|    0| 
    |scores_5_decision_function_4_fu_129    |decision_function_4   |        0|   0|  0|  190|    0| 
    |scores_4_decision_function_5_fu_121    |decision_function_5   |        0|   0|  0|  243|    0| 
    |scores_3_decision_function_6_fu_113    |decision_function_6   |        0|   0|  0|  232|    0| 
    |scores_2_decision_function_7_fu_105    |decision_function_7   |        0|   0|  0|  230|    0| 
    |scores_18_decision_function_8_fu_235   |decision_function_8   |        0|   0|  0|  208|    0| 
    |scores_17_decision_function_9_fu_229   |decision_function_9   |        0|   0|  0|  248|    0| 
    +---------------------------------------+----------------------+---------+----+---+-----+-----+ 
    |Total                                  |                      |        0|   0|  0| 4666|    0| 
    +---------------------------------------+----------------------+---------+----+---+-----+-----+
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Exercise 1 - mini quiz
• Given what we now know about the implementation, how do you expect the resources and latency to vary with number of 

trees and depth?
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Section 1 summary
• We’ve discussed Boosted Decision Trees (BDTs) and how they work algorithmically 

• We’ve discussed FPGAs and their features that make them suitable for high performance computation 

• We’ve discussed the conifer library for BDTs in FPGAs 

- How the inference algorithm is designed for low latency and high throughput - ‘inverting the problem’ 

- We looked at how that’s written in HLS 

- We looked at how that HLS synthesizes to the intended design 

• Some useful guiding principles: 

- Think about how the problem should map onto parallel and pipelined logic before writing code 

- That said sometimes with HLS it’s easier to just write the code and see what happens 

- Think ‘branchless’: the logic is always doing something, but sometimes you don’t use its result 

• Next we will get a first hands on with conifer
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Exercise 1
• Conifer conversion and HLS walkthrough 

• Clone the GitHub repository and work through notebook part 1 

- git clone https://github.com/thesps/conifer-tutorial 

- If you go through it fast, try changing things like training a model with a different size (number of trees, maximum depth) 

• Return for a summary…

40
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VHDL
• conifer also has a hand-written VHDL 

implementation 

• We won’t use it extensively today but it can 
be interesting to compare side-by-side the 
HLS with the VHDL 

• Notebook part 1b will walk you through it 

• To the right is the VHDL version of the tree 
traversal that we previously saw in HLS 

• The main difference is that we have to do 
the scheduling of operations to clock cycles 
ourselves in VHDL 

- Each ‘if rising_edge(clk) then’ registers a 
signal 

- It can be very unintuitive - the latency of this 
section of code depends on the maximum 
depth of the tree
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  activation(0) <= true; -- the root node is always active 
  GenAct: 
  for i in 1 to nNodes-1 generate 
    LeftChild: 
    if i = iChildLeft(iParent(i)) generate 
      process(clk) 
      begin 
        if rising_edge(clk) then 
          activation(i) <= comparisonPipe(depth(i))(iParent(i)) 
                           and activation(iParent(i)); 
        end if; 
      end process;     
    end generate LeftChild; 
    RightChild: 
    if i = iChildRight(iParent(i)) generate 
      process(clk) 
      begin 
        if rising_edge(clk) then 
          activation(i) <= (not comparisonPipe(depth(i))(iParent(i))) 
                            and activation(iParent(i)); 
        end if; 
      end process;     
    end generate RightChild; 
  end generate GenAct;
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Building accelerators

43

void times_2(int N, int* x, int* y){ 
  #pragma hls interface mode=m_axi port=x offset=slave bundle=gmem 
  #pragma hls interface mode=m_axi port=y offset=slave bundle=gmem 
   
for(int i = 0; i < N; i++){ 

    #pragma hls pipeline 
    y[i] = x[i] * 2; 
  } 
} 

HLS• We can target Xilinx FPGAs as accelerators using Vitis 

• We need to add interfaces for the data I/O 

• Preferred way to do this is with AXI 

- Then we can transfer data via Direct Memory Access (DMA) host 
→ card → host 

• After synthesizing our block with Vitis HLS, we run Vitis by 
invoking v++ to ‘link’ our design 

• Under-the-hood it runs Vivado for full Place and Route
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void times_2(int N, int* x, int* y){ 
  #pragma hls interface mode=m_axi port=x offset=slave bundle=gmem 
  #pragma hls interface mode=m_axi port=y offset=slave bundle=gmem 
   
for(int i = 0; i < N; i++){ 

    #pragma hls pipeline 
    y[i] = x[i] * 2; 
  } 
} 
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Building accelerators
• In conifer we add a section to the 

configuration to specify the target FPGA 
and some settings 

- An important one is the data type of the 
data on the bus 

- The default is float, cast to ap_fixed 
in FPGA 

• conifer adds some HLS dressing to read/
write data and execute inference in a 
variable bound loop (like Alveo example)
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void copy_input(int n, accelerator_input_t* x_in, input_arr_t x_int){ 
  for(int i = 0; i < n_features; i++){ 
    x_int[i] = x_in[n_features*n + i]; 
  } 
} 

void copy_output(int n, score_arr_t score_int, accelerator_output_t* score_out){ 
  for(int i = 0; i < BDT::fn_classes(n_classes); i++){ 
    score_out[BDT::fn_classes(n_classes)*n + i] = score_int[i]; 
  } 
} 

void myproject_accelerator(int N, int& n_f, int& n_c, accelerator_input_t* x, accelerator_output_t* score){ 
  #pragma HLS interface mode=m_axi port=x offset=slave bundle=gmem0 
  #pragma HLS interface mode=m_axi port=score offset=slave bundle=gmem0 
  #pragma HLS interface mode=s_axilite port=N 
  #pragma HLS interface mode=s_axilite port=n_f 
  #pragma HLS interface mode=s_axilite port=n_c 
  n_f = n_features; 
  n_c = BDT::fn_classes(n_classes); 
  for(int n = 0; n < N; n++){ 
    #pragma HLS pipeline 
    input_arr_t x_int; 
    score_arr_t score_int; 
    copy_input(n, x, x_int); 
    bdt.decision_function(x_int, score_int); 
    copy_output(n, score_int, score); 
  } 
}
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Forest Processing Unit
• So far we looked at ‘static’ BDT evaluation 

- One trained model → one HLS function → one IP → one bitfile 

- So if the model changes at all, we need to redo everything → takes hours! 

• In next section we will look at a more dynamic & reconfigurable implementation called “Forest Processing Unit” (FPU) 

• It’s still implemented with HLS, so will be a first look at going away from fixed-latency, fixed-function types of designs using 
HLS
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FPU Design
• We would like a base design that can perform inference of ~any BDT model afterwards (within some limits) 

• And we would like to take advantage of the FPGA to get good performance (fast inference) 

• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model
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FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• Use a data representation like we already used, and map to BRAMs 

- Many independent small memories 

• Store one node at one address, child indices are pointers to other addresses
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Tree Engine
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Logic
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Tree: 
      index          : [ 0,  1,  2,   3,   4,    5,  6] 
      children_left  : [ 1,  3,  5,  -2,  -2,   -2, -2] 
      children_right : [ 2,  4,  6,  -2,  -2,   -2, -2] 
      parent         : [ -1, 0,  0,   1,   1,    2,  2] 
      feature        : [ 4,  7,  1,  -2,  -2,   -2, -2] 
      threshold      : [ 7,  2,  9,  -2,  -2,   -2, -2] 
      value          : [-1, -1, -1, 0.5, 0.4, -0.5, -1]
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FPU Design
• Idea 1: represent the BDT as data, operate inference on that data, and load new data for a new model 

• To perform inference of a model on some data we need to: 

- Read the next node 

- Compare the appropriate feature with the threshold 

- Get the pointer to the next node 

• Question: what would be the pipeline initiation interval of this loop?
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void TreeEngine(T X[NVARS], DecisionNode nodes[NNODES], U& y){ 
  #pragma HLS pipeline 
  ap_int<ADDRBITS> i = 0; 
  auto node = nodes[i]; 
  node_loop : while(!node.is_leaf){ 
    #pragma HLS pipeline 
    i = X[node.feature] <= node.threshold ?  

                    node.child_left : node.child_right; 
    node = nodes[i]; 
  } 
  y = node.score; 
}
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FPU Design
• Idea 2: parallelise over trees by having independent ‘Tree Engines’, aggregate their output for the model 

• Put as many Tree Engines as will fit in the FPGA 

• Number of Tree Engines will constrain the model size that fits
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FPU Design
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U y_acc = 0;     
for(int i = 0; i < NTE; i++){ 
 #pragma HLS unroll 
  U y_i = 0; 
  TreeEngine(X, nodes[i], y_i); 
  y_acc += y_i; 
}
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FPU System Design
• Putting it together 

- One function that has arguments for both BDT-data and inference-data, and an ‘instruction’ parameter for what to do 

• Define the node memories as static to keep the data in between function calls 

- Load nodes once, perform inference later whenever (multiple times) 

- Later load new nodes for a different model.. 

• This code is a simplified view of that:
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void fpu_top_level(int* X, int* y, int instruction, DecisionNode* nodes){ 
  #pragma interface … 
  static DecisionNode nodes_internal[NTE][NNODES]; 
  #pragma HLS array_partition variable=nodes_int dim=1 
  if(instruction == 0){ 
    load_nodes(nodes, nodes_internal); 
  } 
  if(instruction == 1){ 
    decision_function(X, y); 
  } 
}
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FPU Floorplan
• FPU with 200 Tree Engines in Alveo U50 

- Each TE is highlighted in colour (with a repeating cycle) 

• BRAMs for nodes are in columns 

• Logic near BRAMs is TE inference logic
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FPU Floorplan
• FPU with 100 Tree Engines in pynq-z2 

- Each TE is highlighted in colour (with a repeating cycle) 

• BRAMs for nodes are in columns 

• Logic near BRAMs is TE inference logic
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Section 2 summary
• We’ve looked at some steps beyond the first model-specific HLS 

• Hand-written VHDL implementation of the same code 

• Building accelerators from the model-specific HLS 

• Designing reconfigurable architectures with HLS - the Forest Processing Unit 

- A design where the specific BDT model is unknown at build time, and loaded later as data 

• Next we will try these three things 

• Note: in the exercises we will run some ‘accelerators’ 

- Probably in practise they will actually be ‘decelerators’ 

- There are some examples where they give a real speed up, but it typically requires a large model and lots of data (batch size)
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Break
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Exercise 2
• Part 2a : building a static accelerator (Model-specific HLS → bitfile → runtime) 

- Will take around 1 hour of build time 

• Part 2b: FPU hands on (straight to inference after downloading the bitfile) 

- Need to share access to the FPGA cards so don’t all try this at once 

• Part 1b: if waiting for a synthesis or access to an Alveo try this VHDL notebook
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Summary
• We have looked in detail at the conifer package for BDT inference on FPGAs 

• We’ve gone through the different implementations and learned some more about HLS and FPGA programming 

• This afternoon we will look at hls4ml for NNs on FPGAs
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