
Introduction to HLS

Vitis HLS documentation:
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction

Code for this tutorial:
https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023

What is HLS

• HLS is a compiler from C++ to FPGA firmware

– Configurations and #pragma directives in the code tell the
compiler what to do

• To get efficient FPGA algorithms, you need to write C++
code with FPGA & HLS in mind

11/26/2023 G. Petrucciani (CERN) 2

PART I: FPGA BASICS
disclaimer: this will be an oversimplified description

11/26/2023 G. Petrucciani (CERN) 3

CPU vs FPGA

• An FPGA is an array of configurable logic components and
interconnects to route signals across components

– each component can usually only do simple operations, but they
all run in parallel

• Different programming model wrt CPU / GPU

– A CPU program is a sequence of operations to be executed,
i.e. the program extends in time (it’s stored in memory).

– In an FPGA a program defines what fixed operation each
component does (at all times), i.e. it extends in space in the FPGA.

11/26/2023 G. Petrucciani (CERN) 4

Example: computing ΔR2

11/26/2023 G. Petrucciani (CERN) 5

η1 φ1 η2 φ2

Δη Δφ

Δη2 Δφ
2

ΔR2

+

− −

* *

Pipelining: the steps of the
data processing are done
by different components,
so a new set of inputs can
start to be processed while
the older inputs are still
being processed.

Characterizing an FPGA algorithm

• A FPGA algorithm (“IP Core”) can be characterized by:
1. inputs and outputs

2. clock frequency at which it runs

3. initialization interval (II): the time after which the algorithm can
take in a new set of inputs to process

4. latency, i.e. the time delay between the input and the
corresponding output

5. FPGA resources used

• In HLS, you define 1 and request (2, 3).
HLS tries to implement it, and computes (4, 5)

11/26/2023 G. Petrucciani (CERN) 6

FPGA resources

• There are four main kinds of FPGA resources

– Flip-flops

– LUTs

– Block RAMs

– DSPs (Digital Signal Processors)

• HLS normally infers from the C++ code what kind of
resource to use for each task

– In some cases, helped by #pragma statements

11/26/2023 G. Petrucciani (CERN) 7

FPGA resources: Flip-flops

• FFs, or registers, store values used in the computations

– each flip flop can store 1 bit of information

• The input signal is captured by the FF from its input pin at
the rising edge of the clock.

• During each clock period, signals goes from one or more FF
output pins to input pins of the next FFs

11/26/2023 G. Petrucciani (CERN) 8

FFFF any other
componentsoutin out

clk clk

in

FPGA resources: LUTs

• LUTs are simple components that can compute any logic
function of 5-6 bits

– can be combined to get any logic function

• Typical applications of LUTs:

– Logic gates: AND,OR,NOT,XOR, etc.

– Additions, subtractions, comparisons

– Selection, e.g. (a ? b : c)

– Can also be used for multiplications when small numbers are
involved, or when multiplying by constant factors

11/26/2023 G. Petrucciani (CERN) 9

LUTs and clock

• LUTs are independent from the clock:

– a signal can pass through many LUTs in one clock cycle, as long as
the total time taken by LUTs and routing is below the clock period

max (Σ tLUT + troute) ≤ tclock − Δtclock

11/26/2023 G. Petrucciani (CERN) 10

“clock uncertainty”

FFFF outin outin

FF outin

FF outin

LUT

LUT
LUT

FPGA resources: BRAMs

• Block RAMs can store more data than FFs
– On Xilinx FPGAs, a single block has a capacity of 18k bits

– Multiple blocks can be connected to implement larger memories

– UltraScale+ & Versal devices have also bigger 288k bit UltraRAMs

• Data can be accessed through 2 ports.
– At each clock cycle, each port can read and/or write a word in the

memory at a given address

– The word size can be configured to any of 1, 2, 4, 8, 9, or 18 bits,
independently for each port. If one port is used only to read and one only
two write, then both can also be 36 bits wide

11/26/2023 G. Petrucciani (CERN) 11

BRAMs

• BRAMs are good for storing large amount of data that does
not need a fast throughput in and out of the ram

– e.g. buffer objects to be later processed sequentially, in any order

• Can also be used for ROM lookup tables, e.g. calibrations or
to tabulate functions too complex or slow to evaluate

– HLS allows to define C++ code to initialize the memories

• The ports of BRAM can also operate with separate clocks,
effectively transferring data across clock domains

– However, HLS only works with a single clock

11/26/2023 G. Petrucciani (CERN) 12

FPGA resources: DSP

• Digital Signal Processors are specialized components that
can do maths

• The main use case is integer multiplications:
– One Xilinx DSP can compute A27 x B18 , the product of one 27-bit

integer times a 18-bit integer (A27 x B24 on newer Versal FPGAs)

– DSPs can be combined for bigger multiplications
(usually not needed for the L1 trigger precision)

• DSPs have a latency of up to 4 clock cycles
– But are pipelined with II=1, i.e. they can take one new input at

each clock cycle.

11/26/2023 G. Petrucciani (CERN) 13

Computation

have you ever programmed for an old 8086 CPU?

• Xilinx FPGAs work well with integers
– floating point operations are slow & expensive

• Bitwise operations, additions & comparisons are rather
cheap & fast (bit shifts are free)

• Multiplications are more expensive

• Divisions and any other mathematical functions are very
slow & very expensive
– often best to implement as ROM lookup tables

11/26/2023 G. Petrucciani (CERN) 14

HLS: LANGUAGE BASICS

11/26/2023 G. Petrucciani (CERN) 15

C++ and HLS

A subset of the C++ language can be used efficiently:

• Simple types: custom library for fixed precision integers of
any size (floats supported but discouraged)

• Structured data: structs and fixed-size arrays

– No dynamic memory allocation (e.g. no std::vector, …)

• If blocks, for loops, functions, classes, templates

– Parameter passing by value, pointers or C++ reference

• Top-level code must be a function

– Can use function-local static variables for stateful functions

11/26/2023 G. Petrucciani (CERN) 16

Data types: arbitrary integers

ap_[u]int<N> class: N-bit [unsigned] integers
• support all math operators, and additional bit manipulation

– bit access var[bit], slicing var(hi-bit,lo-bit), concatenation, reduction

• especially important on input or output
– Vitis can infer the expected bit range for the outcome of mathematical

operations (e.g. the sum of two N-bit numbers is a N+1 bit number)

• Integers can be used for much of the math:
– to store physics quantities into integers, decide what is your least

significant bit, and multiply a large constant, i.e. xint = int (xflt · (1/LSB))
– drop some least-significant bits after multiplications (c = (a × b) >> n), to

avoid too large integers
– be mindful of overflows and wrap-around

11/26/2023 G. Petrucciani (CERN) 17

Data types: fixed precision

• ap_[u]fixed<W,I[,opts]>: fixed-point values

– it’s basically an ap_[u]int<W> implicitly multiplied by 2−(W−I)

– optionally it can have better overflows & rounding, e.g.
ap_ufixed<14, 12, AP_RND_CONV, AP_SAT> : saturates instead of
wrap-around for overflows, and rounds instead of truncating
(for a slight increase in FPGA logic resources)

• Useful when your have numbers with different precisions or
multiplications, since the compiler takes care of bit-shifts

– E.g. used extensively for NNs in HLS4ML

11/26/2023 G. Petrucciani (CERN) 18

Data types: structs & arrays

• Arrays can be implemented as BRAM, FIFO queues or just
registers (FFs) for each element
– which choice is better depends on needed access pattern,

can be specified via #pragma’s

– for not too large arrays, best latency & throughput usually
achieved by fully splitting into FFs with this directive

#pragma HLS array_partition variable=<name> complete

• structs or simple classes are supported
– array of structs may be implemented by HLS as also as structure of

arrays, if not fully split (#pragmas can be used to configure it)

11/26/2023 G. Petrucciani (CERN) 19

“if” block, “for” loops

• if: most likely, HLS will have to instantiate FPGA resources to
evaluate both branches of the block:
– resources will be sum of the two branches
– latency will be the worst of the two branches, plus some more

• for: can be sequential or parallel (unrolled); unrolling possible
under some conditions:
– all inputs must be readable simultaneously

(e.g. they must be in FFs, not in a BRAM)
– no complex inter-dependencies across iterations

(but e.g. for (i) { sum += a[i] * b[i]; } may be ok)
– Unrolling can be requested explicitly (#pragma HLS unroll) or

inferred by the HLS tool

11/26/2023 G. Petrucciani (CERN) 20

Functions

• Functions can be used, with inputs & outputs by value or
reference (or pointer)

– the top-level entity to be compiled to firmware must be a function

• The requested pipelining can be specified with

#pragma HLS pipeline II=<N>

• Functions can be inlined to allow more scheduling
optimization (#pragma HLS inline)

– the price is longer compilation and less clear accounting of
resources and latency

11/26/2023 G. Petrucciani (CERN) 21

HLS: TOOLS

11/26/2023 G. Petrucciani (CERN) 22

Disclaimer: something may be a bit obsolete as the new Vitis
2023.2 introduced a new GUI and integrated Vitis+Vivado IDE that I
couldn't test yet.

An HLS project

An HLS project contains:

• C++ sources for the function to synthetize

• C++ source files for the testbench:
– an executable that calls the function to be synthetized, and validates the

output

• Configuration for the project:
– Name of the function to synthetize

– Target FPGA model and clock speed

• A project can be created from a TCL script
– easier to store in git than the project itself

11/26/2023 G. Petrucciani (CERN) 23

Vitis HLS: steps

There’s four steps that Vitis HLS can run:
• C/C++ simulation: compile the code to be synthetized and the test

bench, and run it
– purpose: check you didn’t introduce bugs when optimizing the C++ for

synthesis

• C/C++ synthesis: compile C++ to firmware
– this is the most important step

• C/RTL co-simulation: run side-by-side the C++ and the firmware
– May be useful e.g. for complex algorithms with an internal state

• Running Implementation (RTL Synthesis, Place & Route)
– Provides a more accurate estimate of resource usage and of whether the

RTL will meet timing

11/26/2023 G. Petrucciani (CERN) 24

Running Vitis

• Run Vivado in batch from a TCL file:

vitis_hls -f <script.tcl>

– to create the project from a tcl file

– to run repetitive tasks

• Open a project in the Vitis HLS GUI
vitis_hls -p <project_dir>

– to browse detailed reports

– for a faster cycle of edit / run sim / run synthesis

11/26/2023 G. Petrucciani (CERN) 25

Minimal Vitis TCL project

open_project -reset "proj"
set_top myfunc
add_files src/func.cc
add_files -tb testbench.cc

open_solution -reset "solution"
set_part {xcvu13p-flga2577-2-e}
create_clock -period 2.777

#csim_design
#csynth_design
exit

11/26/2023 G. Petrucciani (CERN) 26

• create a project
• specify the function to synthetize
• source code for synthesis
• source code for the testbench

• create a solution, i.e. a hardware
configuration for synthesis:
FPGA (VU13P), clock (360 MHz)

• Run C-simulation
• Run Synthesis
• Exit from the TCL prompt

Vitis GUI

11/26/2023 G. Petrucciani (CERN) 27

Source
code files

Output logs &
errors

Select tasks
and reports

Main window:
reports, source
code, …

Vitis: synthesis report

11/26/2023 G. Petrucciani (CERN) 28

Clock period requested
+uncertainty, and min.
period achieved.

FPGA

Resource
usage

Latency
and II

HANDS-ON PART

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023

11/26/2023 G. Petrucciani (CERN) 29

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023

EXAMPLE 0 : VERY BASIC STUFF

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/0.basics

11/26/2023 G. Petrucciani (CERN) 30

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/0.basics

Very basic examples

ap_int<16> basic_sum(ap_int<16> a,
 ap_int<16> b) {
 return a+b;
}

ap_int<24> basic_mul(ap_int<16> a,
 ap_int<10> b) {
 return a*b;
}

ap_int<24> pipeline_mul(ap_int<16> a,
 ap_int<10> b) {
 #pragma HLS pipeline II=1
 return a*b;
}

11/26/2023 G. Petrucciani (CERN) 31

Latency II DSP FF LUT

0 1 0 0 23

Latency II DSP FF LUT

0 1 1 0 5

Estimated min clock period: 1.94ns

Estimated min clock period: 0.79ns

Latency II DSP FF LUT

0 1 1 0 5

Estimated min clock period: 1.94ns

Parallelization & switches

void
sum_and_mul(ap_int<16> a, ap_int<10> b,
 ap_int<16> &sum, ap_int<24> &prod) {
 #pragma HLS pipeline II=1
 sum = a + b;
 prod = a * b;
}

ap_int<24> sum_or_mul(bool want_sum,
 ap_int<16> a, ap_int<10> b) {
 #pragma HLS pipeline II=1
 return want_sum ?
 ap_int<24>(a + b):
 ap_int<24>(a * b);
}

11/26/2023 G. Petrucciani (CERN) 32

Latency II DSP FF LUT

0 1 1 0 28

Estimated min clock period: 1.94ns

Latency II DSP FF LUT

1 1 1 44 55

Estimated min clock period: 1.94ns

Latency: worse of sum & product
Resources: sum of sum & product

More resources & latency

Divide et despera

ap_int<16> basic_div(ap_int<16> a,
 ap_int<10> b) {

 #pragma HLS pipeline II=1

 return a / b;

}

11/26/2023 G. Petrucciani (CERN) 33

Latency II DSP FF LUT

19 1 0 655 459

Just don’t do it

Fixed point and saturation

ap_fixed<16,12> fix_sum(

 ap_fixed<16,12> a, ap_fixed<10,6> b)
{

 #pragma HLS pipeline II=1

 return a + b;

}

ap_fixed<16,12,AP_TRN,AP_SAT>
fix_sum_sat(

 ap_fixed<16,12,AP_TRN,AP_SAT> a,

 ap_fixed<10,6,AP_TRN,AP_SAT> b) {

 #pragma HLS pipeline II=1

 return a + b;

}

11/26/2023 G. Petrucciani (CERN) 34

Latency II DSP FF LUT

0 1 0 0 23

Estimated min clock period: 0.79ns

Latency II DSP FF LUT

0 1 0 0 86

Estimated min clock period: 1.03ns

Same as ap_int<16> + ap_int<10>

More logic, for the saturation check
(in this very simple case, a lot more;
usually less so…)

EXAMPLE 1: ARRAYS

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/1.arrays

11/26/2023 G. Petrucciani (CERN) 35

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/1.arrays

Arrays

#define NDATA 12

ap_int<24> mul_add_basic(

 const ap_int<16> a[NDATA],
 const ap_int<16> b[NDATA]) {

 ap_int<24> sum = 0;

 for (int i = 0; i < NDATA; ++i) {

 ap_int<24> prod = (a[i] * b[i]) >> 8;

 sum += prod;

 }

 return sum;

}

11/26/2023 G. Petrucciani (CERN) 36

Latency II DSP FF LUT

16 17 1 93 120

“a” and “b” implemented as memories,
and read sequentially

Arrays input/output limitations

#define NDATA 12

ap_int<24> mul_add_basic(

 const ap_int<16> a[NDATA],
 const ap_int<16> b[NDATA]) {

 #pragma HLS pipeline II=1

 ap_int<24> sum = 0;

 for (int i = 0; i < NDATA; ++i) {

 ap_int<24> prod = (a[i] * b[i]) >> 8;

 sum += prod;

 }

 return sum;

}

11/26/2023 G. Petrucciani (CERN) 37

Latency II DSP FF LUT

8 6 12 432 536

“a” and “b” implemented as memories,
Vitis needs at least 6 clock cycles to read
all the 12 values from the 2 BRAM ports

Arrays partitioning

#define NDATA 12

ap_int<24> mul_add_basic(

 const ap_int<16> a[NDATA],
 const ap_int<16> b[NDATA]) {

 #pragma HLS pipeline II=1

 #pragma HLS array_partition variable=a complete

 #pragma HLS array_partition variable=b complete

 ap_int<24> sum = 0;

 for (int i = 0; i < NDATA; ++i) {

 ap_int<24> prod = (a[i] * b[i]) >> 8;

 sum += prod;

 }

 return sum;

}

11/26/2023 G. Petrucciani (CERN) 38

Latency II DSP FF LUT

2 1 12 363 333

“a” and “b” now are each
implemented 12 individual
integer inputs a_0, a_1, a_2, …

So, they can all be read at once
and the function can be
pipelined at ii=1

EXAMPLE 2: HT COMPUTATION

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/2.simple_ht

11/26/2023 G. Petrucciani (CERN) 39

Structures, loops, understanding latency & dependency on clock speed,
recusive templates, running implementation

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/2.simple_ht

Compute HT with an |η| < 2.4 cut

typedef ap_uint<14> pt_t;
 // 1 unit = 0.25 GeV
 // max = 2 TeV
typedef ap_int<10> etaphi_t;
 // 1 unit = 0.01;
 // max = 5.12

struct Particle {
 pt_t hwPt;
 etaphi_t hwEta;
};

#define NPARTICLES 20

pt_t algo(Particle articles[NPARTICLES]) {

}

11/26/2023 G. Petrucciani (CERN) 40

Define integer datatypes for pT and η

Define a struct for a Particle

Task: compute sum pT for particles with
|η| < 2.4

Compute HT with an |η| cut / 1

pt_t algo_main(Particle
 particles[NPARTICLES])
{

 #pragma HLS ARRAY_PARTITION \
 variable=particles complete

 #pragma HLS pipeline II=1

 pt_t sum = 0;

 for (unsigned int i = 0;
 i < NPARTICLES; ++i) {
 if (-240 <= particles[i].hwEta &&
 particles[i].hwEta <= 240) {

 sum += particles[i].hwPt;

 }

 }

 return sum;

}

11/26/2023 G. Petrucciani (CERN) 41

Latency II DSP FF LUT

13 1 0 2629 2385

Why is it taking so much time just to
add up 20 numbers?

Schedule Viewer

11/26/2023 G. Petrucciani (CERN) 42

Clock cycles

Use “Schedule
Viewer” to

understand latency

Time for that
operation, and

scheduling
dependencies

(arrows)
Operations

Answer: it’s slow because it’s summing all
the 20 numbers in order

Rewritten loop

pt_t algo_main(Particle
 particles[NPARTICLES]) {

 […]

 pt_t sum = 0;

 for (unsigned int i = 0;
 i < NPARTICLES; ++i) {
 bool central =
 (-240 <= particles[i].hwEta &&
 particles[i].hwEta <= 240);

 sum += (central ?
 particles[i].hwPt :
 pt_t(0));

 }

 return sum;

}

11/26/2023 G. Petrucciani (CERN) 43

Latency II DSP FF LUT

2 1 0 375 1271

In this case, rewriting the loop so that
the sum is always performed allows
Vitis HLS to understand that the order
doesn’t matter, and the sum can be
done more efficiently

Recursive template version

// process each half and combine
template<unsigned int N>
pt_t partial_ht(const Particle particles[N]) {
 return partial_ht<N/2>(particles) +
 partial_ht<N-N/2>(&particles[N/2]);

}

// tail case: a single item
template<>
pt_t partial_ht<1>(
 const Particle particles[1]) {
 if (-240 <= particles[0].hwEta &&
particles[0].hwEta <= 240) {
 return particles[0].hwPt;
 } else {
 return pt_t(0);
 }
}

11/26/2023 G. Petrucciani (CERN) 44

Latency II DSP FF LUT

2 1 0 375 1271

In this approach we explicitly tell HLS to
compute the HT from the two halves of
the particle array and combine them

This approach can be used for many
other tasks, e.g. selection, sorting …

Changing clock frequency

Clock (MHz) Latency FFs LUTs

240 MHz 1 clk 4.2 ns 156 1271

360 MHz 2 clk 5.6 ns 375 1271

480 MHz 3 clk 6.2 ns 580 1271

11/26/2023 G. Petrucciani (CERN) 45

• Same number of computations in
any case: same number of LUTs

• Higher frequency, less time per
clock cycle, can do less operations
per clock, need more clock cycles
• Latency in ns is more similar,

but higher for faster clocks
(need to leave more margin)

• Higher usage of FFs
(and of FPGA interconnect,
but it’s not reported by HLS)

• Higher throughputFF

FF
+

+

+ FF

+

+

+ FF

Running implementation

11/26/2023 G. Petrucciani (CERN) 46

Run implementation:
Opens a dialog to

select Synthesis or
also Place + Route,

options, …

Updated resource
estimates:

Usually LUTs & FFs
are much less than
the HLS estimates

Timing estimate.
If it fails, you can increase

the clock uncertainty in HLS

EXAMPLE 3: ET
MISS USING LOOKUP-TABLES

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/3.lookup_table

11/26/2023 G. Petrucciani (CERN) 47

Using lookup tables to speed-up complex functions (e.g. sin, cos, sqrt),

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/3.lookup_table

EXAMPLE 4: A STATEFUL ALGORITHM

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/4.stateful

11/26/2023 G. Petrucciani (CERN) 48

An algorithm to deserialize and unpack muons

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/4.stateful

EXAMPLE A0: RUNNING ON ALVEO U50

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/a0.alveo_50_basics

11/26/2023 G. Petrucciani (CERN) 49

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/a0.alveo_50_basics

EXERCISES

11/26/2023 G. Petrucciani (CERN) 50

	Diapositiva 1: Introduction to HLS
	Diapositiva 2: What is HLS
	Diapositiva 3: PART I: FPGA Basics
	Diapositiva 4: CPU vs FPGA
	Diapositiva 5: Example: computing ΔR2
	Diapositiva 6: Characterizing an FPGA algorithm
	Diapositiva 7: FPGA resources
	Diapositiva 8: FPGA resources: Flip-flops
	Diapositiva 9: FPGA resources: LUTs
	Diapositiva 10: LUTs and clock
	Diapositiva 11: FPGA resources: BRAMs
	Diapositiva 12: BRAMs
	Diapositiva 13: FPGA resources: DSP
	Diapositiva 14: Computation
	Diapositiva 15: HLS: LANGUAGE BASICS
	Diapositiva 16: C++ and HLS
	Diapositiva 17: Data types: arbitrary integers
	Diapositiva 18: Data types: fixed precision
	Diapositiva 19: Data types: structs & arrays
	Diapositiva 20: “if” block, “for” loops
	Diapositiva 21: Functions
	Diapositiva 22: HLS: TOOLS
	Diapositiva 23: An HLS project
	Diapositiva 24: Vitis HLS: steps
	Diapositiva 25: Running Vitis
	Diapositiva 26: Minimal Vitis TCL project
	Diapositiva 27: Vitis GUI
	Diapositiva 28: Vitis: synthesis report
	Diapositiva 29: HANDS-ON PART
	Diapositiva 30: example 0 : Very basic STUFF
	Diapositiva 31: Very basic examples
	Diapositiva 32: Parallelization & switches
	Diapositiva 33: Divide et despera
	Diapositiva 34: Fixed point and saturation
	Diapositiva 35: EXAMPLE 1: arrays
	Diapositiva 36: Arrays
	Diapositiva 37: Arrays input/output limitations
	Diapositiva 38: Arrays partitioning
	Diapositiva 39: EXAMPLE 2: HT computation
	Diapositiva 40: Compute HT with an |η| < 2.4 cut
	Diapositiva 41: Compute HT with an |η| cut / 1
	Diapositiva 42: Schedule Viewer
	Diapositiva 43: Rewritten loop
	Diapositiva 44: Recursive template version
	Diapositiva 45: Changing clock frequency
	Diapositiva 46: Running implementation
	Diapositiva 47: EXAMPLE 3: ETmiss USING Lookup-tables
	Diapositiva 48: EXAMPLE 4: A STATEFUL ALGORITHM
	Diapositiva 49: EXAMPLE A0: Running on Alveo U50
	Diapositiva 50: EXERCISES

