
Introduction to HLS

Vitis HLS documentation:
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction

Code for this tutorial:
https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023


What is HLS

• HLS is a compiler from C++ to FPGA firmware

– Configurations and #pragma directives in the code tell the 
compiler what to do

• To get efficient FPGA algorithms, you need to write C++ 
code with FPGA & HLS in mind
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PART I: FPGA BASICS
disclaimer: this will be an oversimplified description
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CPU vs FPGA

• An FPGA is an array of configurable logic components and 
interconnects to route signals across components

– each component can usually only do simple operations, but they 
all run in parallel

• Different programming model wrt CPU / GPU

– A CPU program is a sequence of operations to be executed,
i.e. the program extends in time (it’s stored in memory).

– In an FPGA a program defines what fixed operation each 
component does (at all times), i.e. it extends in space in the FPGA.
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Example: computing ΔR2
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Pipelining: the steps of the 
data processing are done 
by different components, 
so a new set of inputs can 
start to be processed while 
the older inputs are still 
being processed.



Characterizing an FPGA algorithm

• A FPGA algorithm ( “IP Core”) can be characterized by:
1. inputs and outputs

2. clock frequency at which it runs

3. initialization interval (II): the time after which the algorithm can 
take in a new set of inputs to process

4. latency, i.e. the time delay between the input and the 
corresponding output

5. FPGA resources used

• In HLS, you define 1 and request (2, 3). 
HLS tries to implement it, and computes (4, 5)
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FPGA resources

• There are four main kinds of FPGA resources

– Flip-flops

– LUTs

– Block RAMs

– DSPs (Digital Signal Processors)

• HLS normally infers from the C++ code what kind of 
resource to use for each task

– In some cases, helped by #pragma statements
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FPGA resources: Flip-flops

• FFs, or registers, store values used in the computations

– each flip flop can store 1 bit of information

• The input signal is captured by the FF from its input pin at 
the rising edge of the clock.

• During each clock period, signals goes from one or more FF 
output pins to input pins of the next FFs
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FPGA resources: LUTs

• LUTs are simple components that can compute any logic 
function of 5-6 bits

– can be combined to get any logic function

• Typical applications of LUTs:

– Logic gates: AND,OR,NOT,XOR, etc. 

– Additions, subtractions, comparisons

– Selection, e.g.  ( a ? b : c )

– Can also be used for multiplications when small numbers are 
involved, or when multiplying by constant factors
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LUTs and clock

• LUTs are independent from the clock:

– a signal can pass through many LUTs in one clock cycle, as long as 
the total time taken by LUTs and routing is below the clock period

max (Σ tLUT + troute ) ≤ tclock − Δtclock
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FPGA resources: BRAMs

• Block RAMs can store more data than FFs
– On Xilinx FPGAs, a single block has a capacity of 18k bits

– Multiple blocks can be connected to implement larger memories

– UltraScale+ & Versal devices have also bigger 288k bit UltraRAMs

• Data can be accessed through 2 ports.
– At each clock cycle, each port can read and/or write a word in the 

memory at a given address 

– The word size can be configured to any of 1, 2, 4, 8, 9, or 18 bits, 
independently for each port. If one port is used only to read and one only 
two write, then both can also be 36 bits wide
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BRAMs

• BRAMs are good for storing large amount of data that does 
not need a fast throughput in and out of the ram

– e.g. buffer objects to be later processed sequentially, in any order

• Can also be used for ROM lookup tables, e.g. calibrations or 
to tabulate functions too complex or slow to evaluate

– HLS allows to define C++ code to initialize the memories

• The ports of BRAM can also operate with separate clocks, 
effectively transferring data across clock domains

– However, HLS only works with a single clock
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FPGA resources: DSP

• Digital Signal Processors are specialized components that 
can do maths

• The main use case is integer multiplications:
– One Xilinx DSP can compute A27 x B18 , the product of one 27-bit 

integer times a 18-bit integer (A27 x B24 on newer Versal FPGAs)

– DSPs can be combined for bigger multiplications
(usually not needed for the L1 trigger precision)

• DSPs have a latency of up to 4 clock cycles
– But are pipelined with II=1, i.e. they can take one new input at 

each clock cycle.
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Computation

have you ever programmed for an old 8086 CPU? 

• Xilinx FPGAs work well with integers
– floating point operations are slow & expensive

• Bitwise operations, additions & comparisons are rather 
cheap & fast (bit shifts are free)

• Multiplications are more expensive

• Divisions and any other mathematical functions are very 
slow & very expensive
– often best to implement as ROM lookup tables
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HLS: LANGUAGE BASICS
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C++ and HLS

A subset of the C++ language can be used efficiently:

• Simple types: custom library for fixed precision integers of 
any size (floats supported but discouraged)

• Structured data: structs and fixed-size arrays

– No dynamic memory allocation (e.g. no std::vector, …)

• If blocks, for loops, functions, classes, templates

– Parameter passing by value, pointers or C++ reference

• Top-level code must be a function

– Can use function-local static variables for stateful functions
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Data types: arbitrary integers

ap_[u]int<N> class: N-bit [unsigned] integers
• support all math operators, and additional bit manipulation

– bit access var[bit],  slicing var(hi-bit,lo-bit), concatenation, reduction

• especially important on input or output
– Vitis can infer the expected bit range for the outcome of mathematical 

operations (e.g. the sum of two N-bit numbers is a N+1 bit number)

• Integers can be used for much of the math:
– to store physics quantities into integers, decide what is your least 

significant bit, and multiply a large constant, i.e. xint = int ( xflt · (1/LSB) )   
– drop some least-significant bits after multiplications ( c = (a × b) >> n ), to 

avoid too large integers
– be mindful of overflows and wrap-around
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Data types: fixed precision

• ap_[u]fixed<W,I[,opts]>: fixed-point values

– it’s basically an ap_[u]int<W> implicitly multiplied by 2−(W−I)

– optionally it can have better overflows & rounding, e.g.
ap_ufixed<14, 12, AP_RND_CONV, AP_SAT> :  saturates instead of 
wrap-around for overflows, and rounds instead of truncating
(for a slight increase in FPGA logic resources)

• Useful when your have numbers with different precisions or 
multiplications, since the compiler takes care of bit-shifts

– E.g. used extensively for NNs in HLS4ML 

11/26/2023 G. Petrucciani (CERN) 18



Data types: structs & arrays

• Arrays can be implemented as BRAM, FIFO queues or just 
registers (FFs) for each element
– which choice is better depends on needed access pattern, 

can be specified via #pragma’s

– for not too large arrays, best latency & throughput usually 
achieved by fully splitting into FFs with this directive

#pragma HLS array_partition variable=<name> complete

• structs or simple classes are supported
– array of structs may be implemented by HLS as also as structure of 

arrays, if not fully split (#pragmas can be used to configure it)
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“if” block, “for” loops

• if: most likely, HLS will have to instantiate FPGA resources to 
evaluate both branches of the block:
– resources will be sum of the two branches
– latency will be the worst of the two branches, plus some more

• for: can be sequential or parallel (unrolled); unrolling possible 
under some conditions:
– all inputs must be readable simultaneously 

(e.g. they must be in FFs, not in a BRAM)
– no complex inter-dependencies across iterations

(but e.g. for (i) { sum += a[i] * b[i]; } may be ok )
– Unrolling can be requested explicitly ( #pragma HLS unroll ) or 

inferred by the HLS tool
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Functions

• Functions can be used, with inputs & outputs by value or 
reference (or pointer)

– the top-level entity to be compiled to firmware must be a function

• The requested pipelining can be specified with

#pragma HLS pipeline II=<N>

• Functions can be inlined to allow more scheduling 
optimization (#pragma HLS inline)

– the price is longer compilation and less clear accounting of 
resources and latency
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HLS: TOOLS
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Disclaimer: something may be a bit obsolete as the new Vitis
2023.2 introduced a new GUI and integrated Vitis+Vivado IDE that I 
couldn't test yet.



An HLS project

An HLS project contains:

• C++ sources for the function to synthetize

• C++ source files for the testbench:
– an executable that calls the function to be synthetized, and validates the 

output

• Configuration for the project:
– Name of the function to synthetize

– Target FPGA model and clock speed

• A project can be created from a TCL script
– easier to store in git than the project itself
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Vitis HLS: steps

There’s four steps that Vitis HLS can run:
• C/C++ simulation: compile the code to be synthetized and the test 

bench, and run it
– purpose: check you didn’t introduce bugs when optimizing the C++ for 

synthesis

• C/C++ synthesis: compile C++ to firmware
– this is the most important step

• C/RTL co-simulation: run side-by-side the C++ and the firmware 
– May be useful e.g. for complex algorithms with an internal state

• Running Implementation (RTL Synthesis, Place & Route)
– Provides a more accurate estimate of resource usage and of whether the 

RTL will meet timing
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Running Vitis

• Run Vivado in batch from a TCL file:

vitis_hls -f <script.tcl>

– to create the project from a tcl file

– to run repetitive tasks 

• Open a project in the Vitis HLS GUI
vitis_hls -p <project_dir>

– to browse detailed reports

– for a faster cycle of edit / run sim / run synthesis
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Minimal Vitis TCL project

open_project -reset "proj"
set_top myfunc
add_files src/func.cc
add_files -tb testbench.cc

open_solution -reset "solution"
set_part {xcvu13p-flga2577-2-e}
create_clock -period 2.777

#csim_design
#csynth_design
exit
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• create a project
• specify the function to synthetize
• source code for synthesis
• source code for the testbench

• create a solution, i.e. a hardware 
configuration for synthesis: 
FPGA (VU13P), clock (360 MHz)

• Run C-simulation
• Run Synthesis
• Exit from the TCL prompt



Vitis GUI

11/26/2023 G. Petrucciani (CERN) 27

Source 
code files

Output logs & 
errors

Select tasks 
and reports

Main window: 
reports, source 
code, … 



Vitis: synthesis report
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Latency 
and II



HANDS-ON PART

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023
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EXAMPLE 0 : VERY BASIC STUFF

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/0.basics 
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https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/0.basics


Very basic examples

ap_int<16> basic_sum(ap_int<16> a, 
      ap_int<16> b) {
    return a+b;
}

ap_int<24> basic_mul(ap_int<16> a, 
      ap_int<10> b) {
    return a*b;
}

ap_int<24> pipeline_mul(ap_int<16> a, 
         ap_int<10> b) {
    #pragma HLS pipeline II=1
    return a*b;
}
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Latency II DSP FF LUT

0 1 0 0 23

Latency II DSP FF LUT

0 1 1 0 5

Estimated min clock period: 1.94ns

Estimated min clock period: 0.79ns

Latency II DSP FF LUT

0 1 1 0 5

Estimated min clock period: 1.94ns



Parallelization & switches

void
sum_and_mul(ap_int<16> a, ap_int<10> b, 
    ap_int<16> &sum, ap_int<24> &prod) {
  #pragma HLS pipeline II=1
  sum  = a + b;
  prod = a * b;
}

ap_int<24> sum_or_mul(bool want_sum,
      ap_int<16> a, ap_int<10> b) {
 #pragma HLS pipeline II=1
   return want_sum ? 
  ap_int<24>(a + b): 
  ap_int<24>(a * b);
}
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Latency II DSP FF LUT

0 1 1 0 28

Estimated min clock period: 1.94ns

Latency II DSP FF LUT

1 1 1 44 55

Estimated min clock period: 1.94ns

Latency: worse of sum & product
Resources: sum of sum & product

More resources & latency



Divide et despera

ap_int<16> basic_div(ap_int<16> a, 
     ap_int<10> b) {

 #pragma HLS pipeline II=1

   return a / b;

}
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Latency II DSP FF LUT

19 1 0 655 459

Just don’t do it



Fixed point and saturation

ap_fixed<16,12> fix_sum(

 ap_fixed<16,12> a, ap_fixed<10,6> b) 
{

  #pragma HLS pipeline II=1

    return a + b;

}

ap_fixed<16,12,AP_TRN,AP_SAT> 
fix_sum_sat(

  ap_fixed<16,12,AP_TRN,AP_SAT> a, 

  ap_fixed<10,6,AP_TRN,AP_SAT> b) {

    #pragma HLS pipeline II=1

    return a + b;

}
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Latency II DSP FF LUT

0 1 0 0 23

Estimated min clock period: 0.79ns

Latency II DSP FF LUT

0 1 0 0 86

Estimated min clock period: 1.03ns

Same as ap_int<16> + ap_int<10>

More logic, for the saturation check
(in this very simple case, a lot more; 
usually less so…)



EXAMPLE 1: ARRAYS

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/1.arrays 
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https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/1.arrays


Arrays

#define NDATA 12

ap_int<24> mul_add_basic(

    const ap_int<16> a[NDATA], 
    const ap_int<16> b[NDATA]) {

  ap_int<24> sum = 0;

  for (int i = 0; i < NDATA; ++i) {

    ap_int<24> prod = (a[i] * b[i]) >> 8;

    sum += prod;

  }

  return sum;

}
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Latency II DSP FF LUT

16 17 1 93 120

“a” and “b” implemented as memories,
and read sequentially



Arrays input/output limitations

#define NDATA 12

ap_int<24> mul_add_basic(

    const ap_int<16> a[NDATA], 
    const ap_int<16> b[NDATA]) {

  #pragma HLS pipeline II=1

  ap_int<24> sum = 0;

  for (int i = 0; i < NDATA; ++i) {

    ap_int<24> prod = (a[i] * b[i]) >> 8;

    sum += prod;

  }

  return sum;

}
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Latency II DSP FF LUT

8 6 12 432 536

“a” and “b” implemented as memories,
Vitis needs at least 6 clock cycles to read 
all the 12 values from the 2 BRAM ports



Arrays partitioning

#define NDATA 12

ap_int<24> mul_add_basic(

    const ap_int<16> a[NDATA], 
    const ap_int<16> b[NDATA]) {

  #pragma HLS pipeline II=1

  #pragma HLS array_partition variable=a complete

  #pragma HLS array_partition variable=b complete

  ap_int<24> sum = 0;

  for (int i = 0; i < NDATA; ++i) {

    ap_int<24> prod = (a[i] * b[i]) >> 8;

    sum += prod;

  }

  return sum;

}
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Latency II DSP FF LUT

2 1 12 363 333

“a” and “b” now are each 
implemented 12 individual 
integer inputs a_0, a_1, a_2, …

So, they can all be read at once 
and the function can be 
pipelined at ii=1



EXAMPLE 2: HT COMPUTATION

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/2.simple_ht 
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Structures, loops, understanding latency & dependency on clock speed, 
recusive templates, running implementation

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/2.simple_ht


Compute HT with an |η| < 2.4 cut

typedef ap_uint<14>  pt_t;    
  // 1 unit = 0.25 GeV
  // max = 2 TeV
typedef ap_int<10>  etaphi_t;  
 // 1 unit = 0.01;     
 // max = 5.12

struct Particle {
    pt_t hwPt;
    etaphi_t hwEta; 
};

#define NPARTICLES 20

pt_t algo(Particle articles[NPARTICLES]) {

}
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Define integer datatypes for pT and η 

Define a struct for a Particle

Task: compute sum pT for particles with 
|η| < 2.4



Compute HT with an |η| cut / 1

pt_t algo_main(Particle  
          particles[NPARTICLES]) 
{

    #pragma HLS ARRAY_PARTITION \
   variable=particles complete

    #pragma HLS pipeline II=1

    pt_t sum = 0;

    for (unsigned int i = 0; 
         i < NPARTICLES; ++i) {
       if (-240 <= particles[i].hwEta && 
            particles[i].hwEta <= 240) {

        sum += particles[i].hwPt;

       }

    }

    return sum;

}
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Latency II DSP FF LUT

13 1 0 2629 2385

Why is it taking so much time just to 
add up 20 numbers?



Schedule Viewer
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Clock cycles

Use “Schedule 
Viewer” to 

understand latency

Time for that 
operation, and 

scheduling 
dependencies

(arrows)
Operations

Answer: it’s slow because it’s summing all 
the 20 numbers in order



Rewritten loop

pt_t algo_main(Particle  
          particles[NPARTICLES]) {

    […]

    pt_t sum = 0;

    for (unsigned int i = 0; 
         i < NPARTICLES; ++i) {
       bool central = 
          (-240 <= particles[i].hwEta &&
           particles[i].hwEta <= 240);

       sum += (central ?
               particles[i].hwPt : 
     pt_t(0));    

    }

    return sum;

}
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Latency II DSP FF LUT

2 1 0 375 1271

In this case, rewriting the loop so that 
the sum is always performed allows 
Vitis HLS to understand that the order 
doesn’t matter, and the sum can be 
done more efficiently



Recursive template version

// process each half and combine
template<unsigned int N>
pt_t partial_ht(const Particle particles[N]) {
   return partial_ht<N/2>(particles) +
          partial_ht<N-N/2>(&particles[N/2]);

}

// tail case: a single item
template<> 
pt_t partial_ht<1>(
 const Particle particles[1]) { 
    if (-240 <= particles[0].hwEta && 
particles[0].hwEta <= 240) {
        return particles[0].hwPt;
    } else {
        return pt_t(0);
    }
}
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Latency II DSP FF LUT

2 1 0 375 1271

In this approach we explicitly tell HLS to 
compute the HT from the two halves of 
the particle array and combine them

This approach can be used for many 
other tasks, e.g. selection, sorting …



Changing clock frequency

Clock (MHz) Latency FFs LUTs

240 MHz 1 clk 4.2 ns 156 1271

360 MHz 2 clk 5.6 ns 375 1271

480 MHz 3 clk 6.2 ns 580 1271

11/26/2023 G. Petrucciani (CERN) 45

• Same number of computations in 
any case: same number of LUTs

• Higher frequency, less time per 
clock cycle, can do less operations 
per clock, need more clock cycles
• Latency in ns is more similar, 

but higher for faster clocks 
(need to leave more margin)

• Higher usage of FFs
(and of FPGA interconnect, 
but it’s not reported by HLS)

• Higher throughputFF

FF
+

+

+ FF

+

+

+ FF



Running implementation
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Run implementation:
Opens a dialog to 

select Synthesis or 
also Place + Route, 

options, …

Updated resource 
estimates:

Usually LUTs & FFs 
are much less than 
the HLS estimates

Timing estimate. 
If it fails, you can increase 

the clock uncertainty in HLS



EXAMPLE 3: ET
MISS USING LOOKUP-TABLES

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/3.lookup_table 
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Using lookup tables to speed-up complex functions (e.g. sin, cos, sqrt),

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/3.lookup_table


EXAMPLE 4: A STATEFUL ALGORITHM

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/4.stateful 
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An algorithm to deserialize and unpack muons

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/4.stateful


EXAMPLE A0: RUNNING ON ALVEO U50

https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/a0.alveo_50_basics 
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https://github.com/gpetruc/GlobalCorrelator_HLS/tree/tutorial-2023/a0.alveo_50_basics


EXERCISES
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