
Generation of a primary event

Pablo Cirrone
INFN – Laboratori Nazionali del Sud

Geant4 Course
at the XXI Seminar on software for nuclear, subuclear and

applied physics
Alghero, June 9th- 14th, 2024

n Primary vertex and primary particle

n G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

n The particle gun

n General Particle Source (or GPS)

n Particle gun or GPS?

Outline

User Classes
Initialisation classes
Invoked at the initialization

n G4VUserDetectorConstruction
n G4VUserPhysicsList

Action classes
Invoked during the execution loop

n G4VUserActionInitialization
n G4VUserPrimaryGeneratorAction
n G4UserRunAction (*)
n G4UserEventAction
n G4UserTrackingAction
n G4UserStackingAction
n G4UserSteppingAction

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread. Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

G4VUserPrimaryGeneratorAction

n It is one of the mandatory user classes and it
controls the generation of primary particles
n This class does not directly generate primaries

but invokes the GeneratePrimaryVertex()
method of a generator to create the initial state

n It registers the primary particle(s) to the
G4Event object

n It has GeneratePrimaries(G4Event*)
method which is purely virtual, so it must be
implemented in the user class

G4VUserPrimaryGeneratorAction

n Primary vertex and primary particle

n G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

n The particle gun

n General Particle Source (or GPS)

n Particle gun or GPS?

Outline

G4VPrimaryGenerator
n G4VPrimaryGenerator is the base class for particle

generators, that are called by
GeneratePrimaries(G4Event*) to produce an
initial state
n Notice: you may have many particles from one vertex, or even many

vertices in the initial state
n Derived class from G4VPrimaryGenerator must

implement the purely virtual method
GeneratePrimaryVertex(G4Event*)

n Geant4 provides three concrete classes derived by
G4VPrimaryGenerator

n G4ParticleGun
n G4HEPEvtInterface (not described here à ask, if you are curious !)
n G4GeneralParticleSource

G4ParticleGun
n (Simplest) concrete implementation of
G4VPrimaryGenerator
n It can be used for experiment-specific primary

generator implementation
n It shoots one primary particle of a given energy

from a given point at a given time to a given
direction

n Various “Set” methods are available (see
../source/event/include/G4ParticleGun.hh)
void SetParticleEnergy(G4double aKineticEnergy);
void SetParticleMomentum(G4double aMomentum);
void SetParticlePosition(G4ThreeVector aPosition);
void SetNumberOfParticles(G4int aHistoryNumber);

G4VUserPrimaryGeneratorAction:
the usual recipe

n Constructor
n Instantiate primary generator (i.e. G4ParticleGun())
particleGun = new G4ParticleGun();

n (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(1.0*GeV);

n GeneratePrimaries() mandatory method
n Randomize particle-by-particle value, if required

n Set these values to the primary generator
n Invoke GeneratePrimaryVertex() method of primary

generator
n particleGun->GeneratePrimaryVertex(…)

A "real-life" myPrimaryGenerator:
constructor & destructor

myPrimaryGenerator::myPrimaryGenerator ()
: G4VUserPrimaryGeneratorAction(), fParticleGun(0)
{
 fParticleGun = new G4ParticleGun();

 // set defaults
 fParticleGun->SetParticleDefinition(
 G4Gamma::Definition());
 fParticleGun->

SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 fParticleGun->SetParticleEnergy(6.*MeV);
}

Instantiate
concrete generator

myPrimaryGenerator::~myPrimaryGenerator ()
{
 delete fParticleGun;
}

Clean it up in the destructor

A "real-life" myPrimaryGenerator:
GeneratePrimaries(G4Event*)

myPrimaryGenerator::GeneratePrimaries(G4Event* evt)
{
 // Randomize event-per-event
 G4double cosT = -1.0 + G4UniformRand()*2.0;
 G4double phi = G4UniformRand()*twopi;

G4double sinT = sqrt(1-cosT*cosT);
G4ThreeVector direction(sinT*sin(phi),sinT*cos(phi),cosT);

G4double ene = G4UniformRand()*6*MeV;

 fParticleGun->SetParticleDirection(direction);
 fParticleGun->SetParticleEnergy(ene);

 fParticleGun->GeneratePrimaryVertex(evt);
}

Sample direction
isotropically

Shoot event

Sample energy
(flat distr.)

G4ParticleGun
n Commands can be also given interactively by user interface

n But cannot do randomization in this case
n Allows to change primary parameters between one run and

an other
n Notice: parameters from the UI could be overwritten in
GeneratePrimaries()

/gun/energy 10 MeV
/gun/particle mu+
/gun/direction 0 0 -1
/run/beamOn 100
/gun/particle ion
/gun/ion 55 137
/gun/position 10 10 -100 cm
/run/beamOn 100

Start first run

Start second run

Change settings

Change settings Generate
137Cs

n Primary vertex and primary particle
n Built-in primary particle generators

nThe particle gun
n General Particle Source (or GPS)

n Particle gun or GPS?

Outline

G4GeneralParticleSource()
n source/event/include/G4GeneralParticleSource.hh
n Concrete implementation of G4VPrimaryGenerator

class G4GeneralParticleSource : public
G4VPrimaryGenerator

n Is designed to replace the G4ParticleGun class
n It is designed to allow specification of multiple particle sources each

with independent definition of particle type, position, direction and
energy distribution
n Primary vertex can be randomly chosen on the surface of a certain

volume, or within a volume
n Momentum direction and kinetic energy of the primary particle can also

be randomized
n Distribution defined by UI commands

G4GeneralParticleSource

n On line manual:
n Section 2.7 of the Geant4 Application Developer

Manual
n /gps main commands

n /gps/pos/type (planar, point, etc.)
n /gps/ang/type (iso, planar wave, etc.)
n /gps/energy/type (monoenergetic, linear, User

defined)
n

GPS documentation

ParticleGun vs. GPS
n G4ParticleGun

n Simple and native
n Shoots one track at a time
n Easy to handle

n G4GeneralParticleSource
n Powerful
n Controlled by UI commands

n G4GeneralParticleSourceMessenger.hh
n Almost impossible to do with the naïve Set methods

n Capability of shooting particles from a surface or a volume
n Capability of randomizing kinetic energy, position, direction

following a user-specified distribution (histogram)

When do you need your own derived
class of G4VPrimaryGenerator

n In some cases, what it provided by Geant4 does not fit
specific needs: need to write a derived class from
G4VPrimaryGenerator
n Must implement the virtual method
GeneratePrimaryVertex(G4Event* evt)

n Generate vertices (G4PrimaryVertex) and attach particles
to each of them (G4PrimaryParticle)

n Add vertices to the event evt->AddPrimaryVertex()
n Needed when:

n You need to interface to a non-HEPEvt external generator
n neutrino interaction, Higgs decay, non-standard interactions

n Many particles from one vertex, or many vertices
n double beta decay

n Time difference between primary tracks

Examples
n examples/extended/analysis/A01/src/A
01PrimaryGeneratorAction.cc is a good
example to start with

n Examples also exist for GPS
examples/extended/eventgenerator/
exgps

n And for HEPEvtInterface
example/extended/runAndEvent/RE01/sr
c/RE01PrimaryGeneratorAction.cc

Hands-on session
n Task2

n G4ParticleGun and Geant4 GPS

n http://geant4.lngs.infn.it/alghero2024/task2

n Primary vertex and primary particle
n Built-in primary particle generators

nThe particle gun
nInterfaces to HEPEVT and HEPMC
nGeneral Particle Source (or GPS)

n Particle gun or GPS?

Outline

n Concrete implementation of G4VPrimaryGenerator
n Almost all event generators in use are written in

FORTRAN but Geant4 does not link with any external
FORTRAN code
n Geant4 provides an ASCII file interface for such event

generators
n G4HEPEvtInterface reads an ASCII file produced by

an Event generator and reproduce the G4PrimaryParticle
objects.

n In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

n It generates only the kinematics of the initial state, so
the interaction point must be still set by the user

G4HEPEvtInterface

