INEN . e
(INFN 6 Geant4 GEANT

3 Generation of a primary event

Pablo Cirrone
INFN — Laboratori Nazionali del Sud

Geant4 Course
at the XXI Seminar on software for nuclear, subuclear and
applied physics
Alghero, June 9th- 14th 2024

i Outline

= Primary vertex and primary particle

= G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

i User Classes

Initialisation classes
Invoked at the initialization

s G4VUserDetectorConstruction
= G4VUserPhysicsList

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread.

Action classes
Invoked during the execution loop

s G4VUserActionInitialization

-E G4VUserPrimaryGeneratorAction S

n G4UserRUnActon ()
s G4UserEventAction

s G4UserTrackingAction
s (G4UserStackingAction
m G4UserSteppingAction

Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

i G4VUserPrimaryGeneratorAction

= [t is one of the mandatory user classes and it
controls the generation of primary particles
= This class does not directly generate primaries
but invokes the GeneratePrimaryVertex ()
method of a generator to create the initial state

= It registers the primary particle(s) to the
G4Event object

» It has GeneratePrimaries (G4Event*)
method which is purely virtual, so it must be
implemented in the user class

G4VUserPrimaryGeneratorAction

$1d: G4VUserPrimaryGeneratorAction.hh,v 1.5 2006/06/29 21:13:38 gunter Exp $
GEANT4 tag 3$Name: geant4-99-03-patch-02 $

NN NN
NN NN

#ifndef G4VUserPrimaryGeneratorAction_h
#define G4VUserPrimaryGeneratorAction_h 1

[a]
—
o
n
wn
-

class description: \

This is the abstract base class of the user's mandatory action class
for primary vertex/particle generation. This class has only one pure
virtual method GeneratePrimaries() which is invoked from G4RunManager
during the event loop.
// Note that this class is NOT intended for generating primary vertex/particle
// by itself. This class should

NN N N NN
NN NSNS N

// - have one or more G4VPrimaryGenerator concrete classes such as G4ParticleGun
// - set/change properties of generator(s)

// - pass G4Event object so that the generator(s) can generate primaries.

//

class G4VUserPrimaryGeneratorAction
{
public:
G4VUserPrimaryGeneratorAction();
virtual ~G4VUserPrimaryGeneratorAction();

public:
virtual void GeneratePrimaries(G4Event* anEvent) = 0;

NELEEREEEEREGREREBERREGERRREEEBRERE

-
.

‘u

‘-L Outline

= G4VPrimaryGenerator instantiated via the
GeneratePrimaryVertex()

i G4VPrimaryGenerator

= G4AVPrimaryGenerator is the base class for particle

generators, that are called by
GeneratePrimaries (G4Event*) to produce an

initial state

= Notice: you may have many particles from one vertex, or even many
vertices in the initial state

= Derived class from G4vPrimaryGenerator must

implement the purely virtual method
GeneratePrimaryVertex (G4Event*)

= Geant4 provides three concrete classes derived by
G4AVPrimaryGenerator
= G4ParticleGun
=« G4HEPEvtInterface (not described here - ask, if you are curious !)
=« G4GeneralParticleSource

G4ParticleGun

= (Simplest) concrete implementation of
G4AVPrimaryGenerator

« It can be used for experiment-specific primary
generator implementation

= It shoots one primary particle of a given energy
from a given point at a given time to a given

direction

= Various "Set” methods are available (see
../source/event/include/G4ParticleGun.hh)

void SetParticleEnergy (G4double aKineticEnergy) ;
void SetParticleMomentum (G4double aMomentum) ;
void SetParticlePosition (G4ThreeVector aPosition) ;
void SetNumberOfParticles (G4int aHistoryNumber) ;

G4VUserPrimaryGeneratorAction:
i the usual recipe

= Constructor
= Instantiate primary generator (i.e. G4ParticleGun ())
particleGun = new G4ParticleGun() ;

= (Optional, but advisable): set the default values
particleGun -> SetParticleEnergy(l.0*GeV) ;

= GeneratePrimaries () mandatory method
=« Randomize particle-by-particle value, if required
= Set these values to the primary generator

=« Invoke GeneratePrimaryVertex () method of primary
generator
= particleGun->GeneratePrimaryVertex(..)

A "real-life" myPrimaryGenerator:
constructor & destructor

myPrimaryGenerator: :myPrimaryGenerator ()
G4VUserPrimaryGeneratorAction () , fParticleGun (0)

{

fParticleGun = new G4ParticleGun() ; Instantiate
concrete generator

// set defaults
fParticleGun->SetParticleDefinition (
G4Gamma: :Definition()) ;
fParticleGun->
SetParticleMomentumDirection (G4ThreeVector(0.,0.,1.));
fParticleGun->SetParticleEnergy (6. *MeV) ;

}

myPrimaryGenerator: : ~myPrimaryGenerator ()
{

delete fParticleGun; } Clean it up in the destructor
}

A "real-life" myPrimaryGenerator:
GeneratePrimaries (G4Event¥*)

myPrimaryGenerator: :GeneratePrimaries (G4Event* evt)

{

// Randomize event-per-event

G4double cosT = -1.0 + G4UniformRand () *2.0; Sample direction
G4double phi = G4UniformRand () *twopi; isotropically

G4double sinT = sqrt(l-cosT*cosT) ;
G4AThreeVector direction(sinT*sin(phi) ,sinT*cos (phi) , cosT);

Sample energy
(flat distr.)

fParticleGun->SetParticleDirection(direction) ;
fParticleGun->SetParticleEnergy (ene) ;

G4double ene = G4UniformRand () *6*MeV;]’

fParticleGun->GeneratePrimaryVertex (evt) ;

} Shoot event

i G4ParticleGun

= Commands can be also given interactively by user interface
=« But cannot do randomization in this case

= Allows to change primary parameters between one run and
an other

= Notice: parameters from the UI could be overwritten in
GeneratePrimaries ()

/gun/energy 10 MeV
/gun/particle mu+ Change settings

/gun/direction 0 0 -1

/run/beamOn 100 Start first run

/gun/particle ion _ G
enerate

/gun/ion 55 137 Change settings 137Cs

/gun/position 10 10 -100 cm
/run/beamOn 100 Start second run

‘-L Outline

General Particle Source (or GPS)

i G4GeneralParticleSource()

source/event/include/G4GeneralParticleSource.hh

Concrete implementation of GAVPrimaryGenerator
class G4GeneralParticleSource : public
G4AVPrimaryGenerator

Is designed to replace the G4ParticleGun class

It is designed to allow specification of multiple particle sources each
with independent definition of particle type, position, direction and
energy distribution
= Primary vertex can be randomly chosen on the surface of a certain
volume, or within a volume
= Momentum direction and kinetic energy of the primary particle can also
be randomized

Distribution defined by UI commands

i G4GeneralParticleSource

= On line manual:

= Section 2.7 of the Geant4 Application Developer
Manual

= /gps main commands
=« /gps/pos/type (planar, point, etc.)
=« /gps/ang/type (iso, planar wave, etc.)

= /gps/enerqgy/type (monoenergetic, linear, User
defined)

:

Square plane

3080

20080

1080

Source Eneg

(-]
IIIIIIIIIIIIIIIIII

Source X—

0 100

Source ¢os(thet

Spherical surf3

3000

Z200C0

1000

0

Source Ene

Source X—]

0 100

Source ¢os{thet

Cylindrical surface, cosine-law radiation, Cosmic diffuse

energy
40000

30080
20000
100G0

lllllllllllllll

¢G4 086 0.8 1

O 1

0.2

Source Energy Spectrum
10

|llllllllllllll

TTTT

lIlIIlIIIIlIIIllIII

—10 -5 O o

10

Source X—Z distribution

0 100 200 300

Source ¢og(theta)—phi distribution

10

5 F

o

5:
_10:Illllllllllllllllll
—10 -5 0 5 10

Source X—Y distribution

10

5

o F

5:
_-IO:IIIIIIIIIIIIIIIIIII
= -5 0 S5 10

Source Y—Z distribution

1580

100

Ll

Source theta/phi distribution

i GPS documentation

Previous

2.7. Geant4 General Particle Source
Chapter 2. Getting Started with Geani4 - Running a Sinple Example Next

2.7.1. Introduction

2.7. Geantd General Particle Source

The G4GeneralParticleSource (GP3) is part of the Geantd toolkit for Monte-Carlo, high-energy particle transport. Specifically, it allows the specifications of the
spectral, spatial and angular distribution of the primary source particles. An overview of the GPS class structure is presented here. Section 2.7.2 covers the
configuration of GPS for a user application, and Section 2.7.3 describes the macro command mterface. Section 2.7.4 gives an example input file to guide the first time

user.
| Spectrum ’Abbreviation | Functional Form ’ User Parameters
|mono-energetic | Mono |I o< S(E-Ep) |Energy Eqn
|linear | Lin |I xp+mxE 2.7.3.3. Source position and structure
|exponential | Exp |I o exp(-EfEp)
’power law ’ Pow |I E" ‘ Command ‘Arguments | Description and restrictions
- o«
sipositype st ets the source positional distribution type: Point [default], Plane, Beam, Surface, Volume.
re— 3 = Vgpsipositype [di [Sets th positional distribution type: Point [default], Plane, Beawm, Surface, Vol
aussian auss = - (E-Ep)?
‘gpsiposfshape |shape ets the source shape type, after /gps/pos/type has been used. For a Plane this can be Circle, Annulus,

1= (2mo)™ expl-(B-Bof'/ [1o0 i ostshape [sh Sets th h aft has been used. For a Plane this can be Circle, Amml

o’ Eillipse, Square, Rectangle. For both Surface or Volume sources this can be Sphere, Bllipsoid, Cylinder, FPara
bremsstrahlung Brem I=] 2F2 [h?c? (exp(-E/T (parallelpiped).

1)]_1 fgpsfposicentre (Y Zunit [Sets the centre co-ordinates 34, Y,Z) of the source [default (0,0,0) cm]. The units can only be micron, mm, cm, m
black body Bbody |I o« (KT E exp(-E/T) or km.
cosmmic diffuse N Cd ol . |fepsiposirotl R1xRly Defines the first (x' direction) vector R1 [default (1,0,0)], which does not need to be a unit vector, and is used
oy g 8 [oc[(EE)™ + (EE0)™] R1z together with / gps/pos/rot2 to create the rotation matrix of the shape defined with /gps/shape.

fapsiposirot2 R2x R2y Defines the second vector R2 in the xy plane [default (0,1,0)], which does not need to be a unit vector, and is used
R2; tohgether with /gps/pos/roti to create the rotation matrix of the shape defined with /gps/shape.

|fgps/posﬂ1alﬁ< len unit |Sets the half-length in x [default 0 cm] of the source. The units can only be micron, mm, cm, m or km.

. am L . I~ S - -~ - —

ParticleGun vs. GPS

: o/f you need to shot primary
= G4ParticleGun particles from a surface of a

complicated volume (outward or

=« Simple and native

= Shoots one track at a time inward), GPS is the choice
« Easy to handle

» G4GeneralParticleSource *It you need a complicated
. Powerful distribution, GPS is the choice

=« Controlled by UI commands
= G4GeneralParticleSourceMessenger.hh
= Almost impossible to do with the naive Set methods

= Capability of shooting particles from a surface or a volume

= Capability of randomizing kinetic energy, position, direction
following a user-specified distribution (histogram)

When do you need your own derived
class of GAVPrimaryGenerator

= In some cases, what it provided by Geant4 does not fit
specific needs: need to write a derived class from
G4AVPrimaryGenerator

= Must implement the virtual method
GeneratePrimaryVertex (G4Event* evt)

= Generate vertices (G4PrimaryVertex) and attach particles
to each of them (G4PrimaryParticle)

= Add vertices to the event evt->AddPrimaryVertex ()

= Needed when:
= You need to interface to a non-HEPEvt external generator
= heutrino interaction, Higgs decay, non-standard interactions
= Many particles from one vertex, or many vertices
= double beta decay
= Time difference between primary tracks

i Examples

» examples/extended/analysis/A01/src/A
OlPrimaryGeneratorAction.cc iS a good
example to start with

= Examples also exist for GPS
examples/extended/eventgenerator/

exgps
= And for HEPEvtInterface

example/extended/runAndEvent/REQ01l/sr
c/REO1PrimaryGeneratorAction.cc

i Hands-on session

= lask2
= G4ParticleGun and Geant4 GPS

= http://geantd4.1lngs.infn.it/alghero2024/task2

i Outline

M Interfaces to HEPEVT and HEPMC

i G4HEPEvtInterface

= Concrete implementation of G4VPrimaryGenerator

= Almost all event generators in use are written in
FORTRAN but Geant4 does not link with any external
FORTRAN code
= Geant4 provides an ASCII file interface for such event

generators

= G4HEPEvtInterface reads an ASCII file produced by
aB Event generator and reproduce the G4PrimaryParticle
objects.

= In particular it reads the /HEPEVT/ fortran block (born
at the LEP time) used by almost all event generators

= It generates only the kinematics of the initial state, so
the interaction point must be still set by the user

